在知识图谱补全和推荐系统中常用到recall,mrr,ndcg,hit的评价指标
知识图谱补全也成为链接预测,是用来预测三元组(h,r,t)中缺失实体h,t或r的任务,对于每一个缺失的实体,模型将被要求用所有的知识图谱中的实体作为候选项进行计算,
在测试阶段,对于每个待测试三元组,用知识图谱中的除去h与t之外的其他实体作为候选项来替换头实体或尾实体,并且按大小顺序给出这些实体的评分函数f_r。
还是按照上述进行f函数值排列,然后去看每个testing triple正确答案是否排在序列的前十,如果在的话就计数+1,最终 排在前十的 个数/总个数 就是Hit@10
mrr@10
MRR的全称是Mean Reciprocal Ranking,其中Reciprocal是指“倒数的”的意思。具体的计算方法如下:第一个正确答案的排名的倒数。Ranki的值越小越好,排名越靠前越好
详细的计算,其中|Q|表示集合个数,ranki是指第个三元组的链接预测排,
mrr@10,表示,在rank在前10的算作数,其他的皆失效。
ndcg@n 只关心前n个排序是否正确,后面的排序正不正确不予考虑。
ndcg@n 的计算方式比较特别,要进行两次排序,一次是对预测的结果排序,另一次是对实际的分布排序。
例如list [3,2,0,1,1,3,0,0]
计算ndcg@5时只考虑前5个元素[3,2,0,1,1]
理想情况下的排序为[3,3,2,1,1]