URAL 1119 Metro (动态规划)

本文介绍了一种使用动态规划解决二维网格中从起点到终点最短路径的方法。通过定义状态转移方程,考虑是否允许对角线移动,递推求得最优解。适用于路径规划、计算机视觉等领域。

解题思路:由题意可以容易得到递推式(dp[i][j]表示到坐标为(i,j)的点所需的距离)

if(存在斜边)

dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1.414)

else

dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1]+1)

所以只需要按照递推式从下至上,从左至右递推即可。

#include <iostream>
#include <cstdio>
using namespace std;

#define P 1.414213562
int a[1005][1005];
double dp[1005][1005];
int main()
{
    //freopen("test.txt","r",stdin);
    int n,m,k,i,j,x,y;
    cin>>n>>m;
    cin>>k;
    for (i = 0; i < k; i++)
    {
        cin>>x>>y;
        a[x][y] = 1;//用a这个数列标记是否有斜边
    }
    dp[0][0] = 0;
    for(i=1;i<=n;i++)//初始化第一行
        dp[i][0]=dp[i-1][0]+1;
    for(i=1;i<=m;i++)//初始化第一列
        dp[0][i]=dp[0][i-1]+1;
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=m;j++)
        {
            if(a[i][j])
                dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+P));
            else
                dp[i][j] = min(dp[i-1][j]+1,dp[i][j-1]+1);
        }
    }
    //printf("%.lf\n",dp[n][m]*100);
    cout<<(int)(dp[n][m] * 100.0 + 0.5)<<endl;
    //cout << "Hello world!" << endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值