WEEK2 周记 作业A题——广度优先搜索迷宫问题

广度优先搜索迷宫问题

一、题意

1.简述

5*5矩阵,从左上角入口走到右下角出口,要求找出最短路线。

2.输入格式

输入是一个5 × 5的二维数组,仅由0、1两数字组成,表示法阵地图。

3.输出格式

输出若干行,表示从左上角到右下角的最短路径依次经过的坐标,格式如样例所示。数据保证有唯一解。

4.样例

Input

在这里插入图片描述

Output

在这里插入图片描述

二、算法

1.主要步骤

大体思路

按照bfs的思想,一层层的向四周发散搜索,首先从队列中取出一个点(初始时这个点是起点),将该点四周没有到达的点入队,并将它们标记为已到达,防止后续的搜索中将其当成未到达点而再次入队,形成回路。之后继续从队列中取出点进行新的循环,直到取出的点是终点,此时的路径必然是最短路径(因为搜索的时候是一层一层进行的)。或者队列为空而还没有找到终点,此时说明没有路径。

其中,为了好遍历一个点四周的4个点,开辟常量数组,这样写的代码更简洁。

int ud[4]={1,-1,0,0};
int lr[4]={0,0,1,-1};

//遍历四个邻接点
for(i=0;i<4;i++)
{
	if(m[x+ud[i]][y+lr[i]]==0)
	{//此时说明该邻接点未到达
		pair<int,int> c(x+ud[i],y+lr[i]);
		q.push(c);
		dis[x+ud[i]][y+lr[i]]=dis[x][y]+1;
			//算出到达该点时的路径距离
		m[x+ud[i]][y+lr[i]]=1;
			//在m矩阵相应的位置标记已到达
	}
}

在打印路径时,采用递归的方法来逆序输出:

void print(int x,int y)
{
	int i;
	if(x==1&&y==1)
	{
		printf("(%d, %d)\n",x-1,y-1);
		return;
	}
	//逆序,从终点到起点寻找邻接点中dis[x+ud[i]][y+lr[i]]=dis[x][y]-1的点,必然是某一条路径中该点的前一个点
	for(i=0;i<4;i++)
		if(dis[x+ud[i]][y+lr[i]]==dis[x][y]-1)	
		{
			if(dis[x][y]-1==0&&(x+ud[i]!=1||y+lr[i]!=1))
				//此时是到达了围墙上
				continue;
			else
				break;	
		}
	print(x+ud[i],y+lr[i]);
		//进入下一个点
	printf("(%d, %d)\n",x-1,y-1);
		//递归回来之后打印,从而实现逆序输出
}

2.测试结果

在这里插入图片描述

三、代码

#include<iostream>
#include<cmath>
#include<cstdio>
#include<queue>
using namespace std;
int m[7][7];
int ud[4]={1,-1,0,0};
int lr[4]={0,0,1,-1};
int dis[6][6];
void print(int x,int y)
{
	int i;
	if(x==1&&y==1)
	{
		printf("(%d, %d)\n",x-1,y-1);
		return;
	}
		
	for(i=0;i<4;i++)
		if(dis[x+ud[i]][y+lr[i]]==dis[x][y]-1)	
		{
			if(dis[x][y]-1==0&&(x+ud[i]!=1||y+lr[i]!=1))
				continue;
			else
				break;	
		}
	print(x+ud[i],y+lr[i]);
	printf("(%d, %d)\n",x-1,y-1);
}
int main()
{
	queue<pair<int,int> > q;
	int i,j;
	for(i=0;i<7;i++)
	{
		m[0][i]=1;
		m[6][i]=1;
		m[i][0]=1;
		m[i][6]=1;
	}
	for(i=1;i<=5;i++)
		for(j=1;j<=5;j++)
			scanf("%d",&m[i][j]);
	pair<int,int> cor(1,1);//架设起点为1,1 
	q.push(cor);
	m[cor.first][cor.second]=1; 
	while(!q.empty())
	{
		pair<int,int> temp=q.front();
		q.pop();
		int x=temp.first;
		int y=temp.second;
		for(i=0;i<4;i++)
		{
			if(m[x+ud[i]][y+lr[i]]==0)
			{
				pair<int,int> c(x+ud[i],y+lr[i]);
				q.push(c);
				dis[x+ud[i]][y+lr[i]]=dis[x][y]+1;
				m[x+ud[i]][y+lr[i]]=1;
			}
		}
		if(x==5&&y==5)
			break;
	}
	print(5,5);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值