广度优先搜索迷宫问题
一、题意
1.简述
5*5矩阵,从左上角入口走到右下角出口,要求找出最短路线。
2.输入格式
输入是一个5 × 5的二维数组,仅由0、1两数字组成,表示法阵地图。
3.输出格式
输出若干行,表示从左上角到右下角的最短路径依次经过的坐标,格式如样例所示。数据保证有唯一解。
4.样例
Input
Output
二、算法
1.主要步骤
大体思路
按照bfs的思想,一层层的向四周发散搜索,首先从队列中取出一个点(初始时这个点是起点),将该点四周没有到达的点入队,并将它们标记为已到达,防止后续的搜索中将其当成未到达点而再次入队,形成回路。之后继续从队列中取出点进行新的循环,直到取出的点是终点,此时的路径必然是最短路径(因为搜索的时候是一层一层进行的)。或者队列为空而还没有找到终点,此时说明没有路径。
其中,为了好遍历一个点四周的4个点,开辟常量数组,这样写的代码更简洁。
int ud[4]={1,-1,0,0};
int lr[4]={0,0,1,-1};
//遍历四个邻接点
for(i=0;i<4;i++)
{
if(m[x+ud[i]][y+lr[i]]==0)
{//此时说明该邻接点未到达
pair<int,int> c(x+ud[i],y+lr[i]);
q.push(c);
dis[x+ud[i]][y+lr[i]]=dis[x][y]+1;
//算出到达该点时的路径距离
m[x+ud[i]][y+lr[i]]=1;
//在m矩阵相应的位置标记已到达
}
}
在打印路径时,采用递归的方法来逆序输出:
void print(int x,int y)
{
int i;
if(x==1&&y==1)
{
printf("(%d, %d)\n",x-1,y-1);
return;
}
//逆序,从终点到起点寻找邻接点中dis[x+ud[i]][y+lr[i]]=dis[x][y]-1的点,必然是某一条路径中该点的前一个点
for(i=0;i<4;i++)
if(dis[x+ud[i]][y+lr[i]]==dis[x][y]-1)
{
if(dis[x][y]-1==0&&(x+ud[i]!=1||y+lr[i]!=1))
//此时是到达了围墙上
continue;
else
break;
}
print(x+ud[i],y+lr[i]);
//进入下一个点
printf("(%d, %d)\n",x-1,y-1);
//递归回来之后打印,从而实现逆序输出
}
2.测试结果
三、代码
#include<iostream>
#include<cmath>
#include<cstdio>
#include<queue>
using namespace std;
int m[7][7];
int ud[4]={1,-1,0,0};
int lr[4]={0,0,1,-1};
int dis[6][6];
void print(int x,int y)
{
int i;
if(x==1&&y==1)
{
printf("(%d, %d)\n",x-1,y-1);
return;
}
for(i=0;i<4;i++)
if(dis[x+ud[i]][y+lr[i]]==dis[x][y]-1)
{
if(dis[x][y]-1==0&&(x+ud[i]!=1||y+lr[i]!=1))
continue;
else
break;
}
print(x+ud[i],y+lr[i]);
printf("(%d, %d)\n",x-1,y-1);
}
int main()
{
queue<pair<int,int> > q;
int i,j;
for(i=0;i<7;i++)
{
m[0][i]=1;
m[6][i]=1;
m[i][0]=1;
m[i][6]=1;
}
for(i=1;i<=5;i++)
for(j=1;j<=5;j++)
scanf("%d",&m[i][j]);
pair<int,int> cor(1,1);//架设起点为1,1
q.push(cor);
m[cor.first][cor.second]=1;
while(!q.empty())
{
pair<int,int> temp=q.front();
q.pop();
int x=temp.first;
int y=temp.second;
for(i=0;i<4;i++)
{
if(m[x+ud[i]][y+lr[i]]==0)
{
pair<int,int> c(x+ud[i],y+lr[i]);
q.push(c);
dis[x+ud[i]][y+lr[i]]=dis[x][y]+1;
m[x+ud[i]][y+lr[i]]=1;
}
}
if(x==5&&y==5)
break;
}
print(5,5);
return 0;
}