题目:有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
解题思路:本题和穿越沙漠问题很像,都属于动态规划问题。
1)要求安全返回,则必须在每个临时点储备足够的回程所需。并且继续往干旱深处运水。
2)要保证利益最大,消耗最小,每次运水均应该是最大负荷。
3)起点有240公斤水,最大需要运4次。要保证安全返回,设第一个临时点距起点x1公里,第一个临时点储水量为y1,则
y1 = 60*3+x1(其中x1是为了返回需要)
x1 = 1/7(60-x1) = 1/8*60;
可卖水量w1 = 60*3
利益Z1 = w1*x1 = 3/8 * 3600;
4)可知:第i个临时点的xi = xi-1 + 1/(2*(4-i+1))*60, i > 1 且i < 4
wi=60*(4-i)
求利益Zi = wi*xi最大
5)再分析:
i = 2时:x2 = (1/8+1/6)*60; w2 = 60*2; Z2 = 7/12*3600;
i = 3时:x2 = x2+1/4*60; w3 = 60; Z3 = 13/24*3600.
因此最大利益是Z2 = 2100.