[物理题] hdu 1155 Bungee Jumping

本文探讨了物理力学中的重力势能、弹性势能与动能的数学表达及其应用。通过编程实现,展示了如何计算不同条件下物体的能量状态,并对特定情况下的结果进行分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重力势能 ep=mgh, 弹性势能 et=0.5k(△l)^2 , 动能 ek=0.5mv^2


ep<0 则说明卡在空中

v^2=2*ep/m


#include"cstdlib"
#include"cstdio"
#include"cstring"
#include"cmath"
#include"queue"
#include"algorithm"
#include"iostream"
using namespace std;
int main()
{
    double k,l,s,w;
    double g=9.81;
    while(scanf("%lf%lf%lf%lf",&k,&l,&s,&w),(k+l+s+w))
    {

        double ep;
        ep=w*g*s;
        if(s>l) ep-=0.5*k*(s-l)*(s-l);
        if(ep<0)
        {
            puts("Stuck in the air.");
            continue;
        }
        double v;
        v=sqrt(ep*2/w);
        puts(v>10?"Killed by the impact.":"James Bond survives.");
    }
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值