[DLX重复覆盖] poj 1084 Square Destroyer

题意:

n*n的矩形阵(n<=5),由2*n*(n+1)根火柴构成,那么其中会有很多诸如边长为1,为2...为n的正方形,现在可以拿走一些火柴,那么就会有一些正方形被破坏掉。

求在已经拿走一些火柴的情况下,还需要拿走至少多少根火柴可以把所有的正方形都破坏掉。

思路:

对于每个位置遍历所有可能的边长,确定这个边长下的正方形的边对应的都是数字几,并且把正方形从1开始编号。

然后根据编号,把正方形和数字建边记录方便下面建图。

然后以火柴棍为行,正方形为列,建立dancing link

然后求解。

这里注意的是,需要强行插入某些行。

代码:

#include"stdio.h"
#include"algorithm"
#include"string.h"
#include"iostream"
#include"cmath"
#include"queue"
#include"map"
#include"vector"
#include"string"
using namespace std;
#define RN 70
#define CN 70
#define N 70*70
int fuck[123];
vector<int>edge[123];
struct DLX
{
    int n,m,C;
    int U[N],D[N],L[N],R[N],Row[N],Col[N];
    int H[RN],S[CN],cnt,ans[RN];
    void init(int _n,int _m)
    {
        n=_n;
        m=_m;
        for(int i=0; i<=m; i++)
        {
            S[i]=0;
            U[i]=D[i]=i;
            L[i]=(i==0?m:i-1);
            R[i]=(i==m?0:i+1);
        }
        C=m;
        for(int i=1; i<=n; i++) H[i]=-1;
    }
    void link(int x,int y)
    {
        C++;
        Row[C]=x;
        Col[C]=y;
        S[y]++;
        U[C]=U[y];
        D[C]=y;
        D[U[y]]=C;
        U[y]=C;
        if(H[x]==-1) H[x]=L[C]=R[C]=C;
        else
        {
            L[C]=L[H[x]];
            R[C]=H[x];
            R[L[H[x]]]=C;
            L[H[x]]=C;
        }
    }
    void del(int x)
    {
        for(int i=D[x]; i!=x; i=D[i])
        {
            R[L[i]]=R[i];
            L[R[i]]=L[i];
        }
    }
    void rec(int x)
    {
        for(int i=U[x]; i!=x; i=U[i])
        {
            R[L[i]]=i;
            L[R[i]]=i;
        }
    }
    int used[CN];
    int h()
    {
        int sum=0;
        for(int i=R[0]; i!=0; i=R[i]) used[i]=0;
        for(int i=R[0]; i!=0; i=R[i])
        {
            if(used[i]==0)
            {
                sum++;
                used[i]=1;
                for(int j=D[i]; j!=i; j=D[j]) for(int k=R[j]; k!=j; k=R[k]) used[Col[k]]=1;
            }
        }
        return sum;
    }
    void dance(int x)
    {
        if(x+h()>=cnt) return ;
        if(R[0]==0)
        {
            cnt=min(cnt,x);
            return ;
        }
        int now=R[0];
        for(int i=R[0]; i!=0; i=R[i])
        {
            if(S[i]<S[now])
                now=i;
        }
        for(int i=D[now]; i!=now; i=D[i])
        {
            del(i);
            for(int j=R[i]; j!=i; j=R[j]) del(j);
            dance(x+1);
            for(int j=L[i]; j!=i; j=L[j]) rec(j);
            rec(i);
        }
        return ;
    }
    void DeleteTrick(int r)  //强行先放入某行。
    {
        if(H[r] == -1) return ;
        for(int i = D[H[r]]; i != H[r]; i = D[i])
        {
            if(H[Row[i]] == i)
            {
                if(R[i] == i)
                {
                    H[Row[i]] = -1;
                }
                else
                {
                    H[Row[i]] = R[i];
                }
            }
            L[R[i]] = L[i];
            R[L[i]] = R[i];
        }

        for(int i = R[H[r]]; i != H[r]; i = R[i])
        {
            for(int j = D[i]; j != i; j = D[j])
            {
                if(H[Row[j]] == j)
                {
                    if(R[j] == j)
                    {
                        H[Row[j]] = -1;
                    }
                    else
                    {
                        H[Row[j]] = R[j];
                    }
                }
                L[R[j]] = L[j];
                R[L[j]] = R[j];
            }
        }
    }
} dlx;
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=0; i<m; i++) scanf("%d",&fuck[i]);
        for(int i=0; i<=70; i++) edge[i].clear();
        int sum=0;
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=n; j++)
            {
                int num=(i-1)*(n+n+1)+j;
                int lit=min(n-i+1,n-j+1);
                for(int k=1; k<=lit; k++)
                {
                    sum++;
                    int up,down,left,right;
                    up=num;
                    left=num+n;
                    right=left+k;
                    down=up+k*(n+n+1);
                    for(int o=0; o<k; o++)
                    {
                        edge[up+o].push_back(sum);
                        edge[left+o*(n+n+1)].push_back(sum);
                        edge[right+o*(n+n+1)].push_back(sum);
                        edge[down+o].push_back(sum);
                    }
                }
            }
        }
        dlx.init(2*n*(n+1),sum);

        for(int i=1; i<=2*n*(n+1); i++)
        {
            for(int j=0; j<(int)edge[i].size(); j++) dlx.link(i,edge[i][j]);
        }
        int fff[123];
        memset(fff,0,sizeof(fff));
        //for(int j=0; j<(int)edge[1].size(); j++) printf("%d ",edge[1][j]);
        //puts("");
        for(int i=0; i<m; i++)
        {
            dlx.DeleteTrick(fuck[i]);
        }
        dlx.cnt=999;
        dlx.dance(0);
        printf("%d\n",dlx.cnt);
    }
    return 0;
}
/*
4
4 10
1 2 3 4 5 6 7 8 9 10
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值