关于卷积神经网络的点滴(二)——理解卷积

      什么是卷积?什么是图像卷积操作?什么是卷积神经网络?一开始一头雾水,通过几天时间的百度、知乎、B站、看书学习等方式去了解,不断通透!今天先理一理“卷积”!

        卷积的英文单词convolution,词根vol就有旋转的意思。百度百科的解释是:在泛函分析中,卷积、旋积或褶积是通过两个函数F和G生成第三个函数的一种数学算子,表征函数F与G经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。

       教科书上一般定义为函数f,g的卷积f*g(n)如下:(偷懒,直接截图)

       

 先对函数g进行了翻转,然后平移了n,(连续形式是积分,离散形式当然是只能求和了)但是为什么要先翻转变为g(-t)再平移n?本来想在网上找一个现成的例子,但都讲得比较难懂,我想了一个例子来帮助理解。

         有两个函数,f函数表示仓库某时刻的进货量,g函数表示某时刻仓库的出货率。

参见上图, 如果不考虑出货,仓库也不是连续进货,只在5:00和8:00进货了,则在11:00时,仓库的存量为:f(5)+f(8),这就是离散的情况;如果假设仓库时时刻刻在不停地进货,则在11:00时仓库的存量就是函数f(t)在0-11的一个积分,这就是连续的情况。

 如果考虑仓库还在不停地出货,那就还要考虑出货率函数g(t)了。

离散的情况:11:00时,仓库的存量为:f(5)*g(11-5)+f(8)*g(11-8)。

连续的情况:就是f(x)*g(t-x)在0-11上的一个积分。

那为什么要进行翻转和平移呢?参见下面两个图!

     

 上图中每一条连线都对应着一个f(x)*g(t-x),最后把所有的值都加起来就是求f(x)*g(t-x)0-t上的积分。但是此图看起来很别扭,如果将g函数翻转180°再平移t,就得到下图:

 这应该就是“卷积”进行翻转平移的物理含义!(表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分),总结一下就是:一个系统,如果它的输入是不稳定的,输出是稳定的,就可以利用卷积求系统存量。

        卷积神经网络是不是在数据输入神经网络之前,要进行一个卷积操作呢?什么是图像卷积操作?后面几天时间整理出来 共享!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值