396. Rotate Function

Given an array of integers A and let n to be its length.

Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:

F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].

Calculate the maximum value of F(0), F(1), ..., F(n-1).

Note:
n is guaranteed to be less than 105.

Example:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.


观察一下规律,数组长度为n,从F(k)到F(k+1),增加的部分恰好是n-1个元素的和,减去的元素是某个元素的倍数。

为了得到O(N)的方法,需要使用滑动窗口来解,滑动窗口的长度为n-1,刚开始包括除了最后一个元素以外的所有元素。

每次滑动窗口内元素的和为sildSum,当前F(k)的值加上sildSum,然后移动窗口,移动以后更新边界start、end,边界设置为循环移动的方式,新start的位置指示着上一次在滑动窗口之外的元素,F(k)再减去A[start]*(A.length()-1)就得到了F(k+1)的值


public class Solution {
    public static int maxRotateFunction(int[] A)
	{
		int len=A.length;
		int sum=0;
		for(int i=0;i<len;i++)
			sum+=A[i]*i;
		
		int max=sum;
		
		int start=0,end=len-2;
		int slidSum=0;
		for(int i=start;i<=end;i++)
			slidSum+=A[i];
		
		
		for(int i=0;i<len-1;i++)
		{
			sum+=slidSum;
			slidSum-=A[end];
			start=(start+len-1)%len;
			end=(end+len-1)%len;
			slidSum+=A[start];
			sum-=(len-1)*A[start];
			max=Math.max(sum, max);
		}
		
		return max;
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值