Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
观察一下规律,数组长度为n,从F(k)到F(k+1),增加的部分恰好是n-1个元素的和,减去的元素是某个元素的倍数。
为了得到O(N)的方法,需要使用滑动窗口来解,滑动窗口的长度为n-1,刚开始包括除了最后一个元素以外的所有元素。
每次滑动窗口内元素的和为sildSum,当前F(k)的值加上sildSum,然后移动窗口,移动以后更新边界start、end,边界设置为循环移动的方式,新start的位置指示着上一次在滑动窗口之外的元素,F(k)再减去A[start]*(A.length()-1)就得到了F(k+1)的值
public class Solution {
public static int maxRotateFunction(int[] A)
{
int len=A.length;
int sum=0;
for(int i=0;i<len;i++)
sum+=A[i]*i;
int max=sum;
int start=0,end=len-2;
int slidSum=0;
for(int i=start;i<=end;i++)
slidSum+=A[i];
for(int i=0;i<len-1;i++)
{
sum+=slidSum;
slidSum-=A[end];
start=(start+len-1)%len;
end=(end+len-1)%len;
slidSum+=A[start];
sum-=(len-1)*A[start];
max=Math.max(sum, max);
}
return max;
}
}