最长回文子串的长度(区间dp)

最长回文子串的长度


dp[i][j]代表区间[i,j]形成的子串是否为回文串
dp回文串的长度
O(n^2)


#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
ll n;
string s1,s2,s;
int dp[55][55];//代表从i到j的子串是不是回文串 
int ac(string s)//最长回文子串的长度 
{
	memset(dp,0,sizeof(dp));
	int len=s.size();
	int ans;//回文串长度 
	for(int i=0;i<len;i++)//初始化 
	{
		dp[i][i]=1;ans=1;
		if(i<=len-2)
		{
			if(s[i]==s[i+1])
			{
				dp[i][i+1]=1;
				ans=2;
			}
		}	
	}
	for(int n=3;n<=len;n++)//dp区间长度 
	{
		for(int i=0;i<=len-n;i++)//枚举区间左端点 
		{
			int j=i+n-1;//右端点
			if(s[i]==s[j])
			{
				dp[i][j]=dp[i+1][j-1];
				if(dp[i][j])//当前长度为n的子串为回文串
				{
					ans=max(ans,n);//更新最长长度 	
				} 				
			} 
			else dp[i][j]=0;
		}
	} 
	return ans; 
}
int main()
{
	cin>>s;
	cout<<ac(s)<<endl;	
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值