- 博客(2)
- 收藏
- 关注
原创 深度学习第P2周:CIFAR10彩色图片识别
数据集:CIFAR10数据集共有60000个样本,每个样本都是一张32*32像素的RGB图像(彩色图像)。语言环境:Python 3.8编译器:Jupyter Lab深度学习环境:模型:CNN网络一、前期准备工作# 训练循环def train(dataloader, model, loss_fn, optimizer): #迭代器,将数据分成多个批次;模型;损失函数;优化器:更新模型参数size = len(dataloader.dataset) # 训练集的大小,一共60000张图片。
2025-03-21 11:33:17
293
原创 深度学习第P1周:Pytorch实现mnist手写数字识别
数据集:MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28。语言环境:Python 3.8编译器:Jupyter Lab深度学习环境:模型:CNN网络loss_fn = nn.CrossEntropyLoss() # 创建交叉熵损失函数,用于多分类问题learn_rate = 1e-2 # 学习率。
2025-03-14 11:46:54
1054
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人