股票短线的王道公式,成功率99%

基本定义

1. 移动平均线(MA)
   - **定义**:
     - 移动平均线是一种统计分析工具,它是通过计算一段时间内股票价格(通常是收盘价)的平均值来描绘价格趋势。例如,5日移动平均线(MA5)就是将最近5个交易日的收盘价相加,然后除以5得到的平均值,随着交易日的推移,不断更新这个平均值并连接起来形成一条线。
   - **作用**:
     - **趋势判断**:帮助投资者直观地判断股价的趋势。当短期均线(如MA5)在长期均线(如MA20)之上并且呈上升态势时,通常表示股价处于上升趋势;反之,当短期均线在长期均线之下且下降时,可能是下降趋势。
     - **支撑和阻力作用**:均线还可以作为股价的支撑位和阻力位。在上升趋势中,股价回调至均线附近时,均线可能起到支撑作用,使股价止跌回升;在下降趋势中,股价反弹至均线附近时,均线可能构成阻力,使股价难以突破继续上涨。
   - **不同周期均线的意义**:
     - **短期均线(如MA5、MA10)**:对股价的短期波动比较敏感,能够快速反映股价的短期变化情况。例如,在短期上涨行情中,短期均线会迅速上升,显示出股价的短期强势。
     - **中期均线(如MA20、MA30)**:综合了一段时间内股价的走势,既能一定程度上反映短期波动,又能体现中期的趋势。它常用于确认股价中期趋势的变化,比如当股价从长期均线下方穿越到上方并站稳,可能预示着中期趋势的反转。
     - **长期均线(如MA60、MA120、MA250)**:更侧重于反映股价的长期趋势。长期均线的方向变化相对缓慢,一旦其方向发生改变,往往意味着市场的长期趋势出现了重大调整。例如,当股价跌破长期均线且长期均线开始掉头向下时,可能表示长期下跌趋势的开始。

2. 成交量(VOL)
   - **定义**:
     - 成交量是指在某个特定时间单位内(如日、周等)股票交易的数量。它是市场活跃度的重要指标,直观地反映了股票买卖的频繁程度。
   - **作用**:
     - **确认价格趋势的有效性**:在股价上升过程中,如果成交量同步放大,说明有更多的买家入场推动股价上涨,这种上涨趋势更具可信度;相反,在股价上涨但成交量逐渐萎缩时,可能表示上涨动力不足,有回调风险。在股价下跌时,成交量放大可能意味着恐慌性抛售,而成交量萎缩的下跌可能是缩量调整。
     - **判断市场情绪和资金流向**:高成交量区域通常表示市场分歧较大,买卖双方交易活跃;低成交量区域可能表示市场参与者的观望情绪浓厚。例如,当一只股票在低位成交量突然放大,可能是有资金开始关注并买入该股票。
     - **顶部和底部的判断辅助**:在股价顶部区域,成交量往往会出现异常放大的情况,这可能是主力出货或者多空双方激烈博弈的结果;在底部区域,成交量如果从极度萎缩逐渐放大,可能是筑底信号,意味着有资金在底部吸筹。

3. 指数平滑异同移动平均线(MACD)
   - **定义**:
     - MACD指标由三部分组成,包括DIF线(差离值线)、DEA线(DIF的9日移动平均线)和MACD柱(DIF与DEA的差值)。DIF线是快速移动平均线(一般是12日EMA)减去慢速移动平均线(一般是26日EMA)得到的,它反映了股价短期和长期趋势的差异。
   - **作用**:
     - **趋势判断和买卖信号**:当DIF线在DEA线之上时,MACD柱为正值,市场通常处于多头行情,是买入信号或者持股信号;当DIF线在DEA线之下时,MACD柱为负值,市场处于空头行情,是卖出信号或者持币信号。而且,当DIF线向上穿过DEA线(金叉)时,也被视为买入信号;当DIF线向下穿过DEA线(死叉)时,视为卖出信号。
     - **背离分析**:MACD还可以用于判断背离现象。当股价创新高但MACD指标未能同步创新高(顶背离)时,可能预示着股价即将下跌;当股价创新低但MACD指标未能同步创新低(底背离)时,可能预示着股价即将上涨。背离现象是一种重要的市场反转信号,提醒投资者注意趋势的可能变化。

4.基本公式
CLOSE>=REF(CLOSE,1)*1.1 计算当前收盘价是否大于前一天收盘价的110%(即涨幅为10%)。
HIGH=CLOSE 检查当天的最高价是否等于收盘价。
DATE=20241113 确保只在2024年11月13日进行筛选。
O<C 开盘价小于收盘价,即一定是阳线
DATE=20241114 表示日期是2024年11月14日。
OPEN>REF(HIGH,1) 检查当天的开盘价是否高于前一天的最高价。
CLOSE>REF(HIGH,1) 检查当天的收盘价是否高于前一天的最高价。
L>REF(HIGH,1)  最低价也要高于前一天的最高价

通达信软件操作

通达信操作界面-公式管理器
编写公式

公式1:《一日大阳,二日上长阴线,三日必大涨》

{日期:通达信中日期的计算方式是DATE=(YEAR - 1900)*10000 + MONTH*100 + DAY}
DATE_TODAY  := NN;  {2024 - 1900 = 124, 11月13日对应的数值}
DATE_NEXDAY := MM;  {2024 - 1900 = 124, 11月14日对应的数值}

{高开:判断日期并比较价格,即14日的最低价 > 前一日的最高价}
HIGH_3  := REF(HIGH,  BARSLAST(DATE = DATE_TODAY));
CLOSE_3 := REF(CLOSE, BARSLAST(DATE = DATE_TODAY));

LOW_4   := REF(LOW,   BARSLAST(DATE = DATE_NEXDAY));
HIGH_4  := REF(HIGH,  BARSLAST(DATE = DATE_NEXDAY));
OPEN_4  := REF(OPEN,  BARSLAST(DATE = DATE_NEXDAY));
CLOSE_4 := REF(CLOSE, BARSLAST(DATE = DATE_NEXDAY));
GAOKAI := LOW_4 > HIGH_3;

{14日线图为T型,或上长阴线}
TANDLY := ((HIGH_4-OPEN_4) / (CLOSE_4-LOW_4)) >= 2; 



{MA:计算MA5、MA10、MA20、MA60均线,7日内呈正向上升爬坡}
MA5 := MA(CLOSE, 5);
MA10 := MA(CLOSE, 10);
MA20 := MA(CLOSE, 20);
MA60 := MA(CLOSE, 60);
{获取当前位置往前推7个交易日的范围判断条件}
REF_COUNT := COUNT(MA5 > MA10 AND MA10 > MA20 AND MA20 > MA60 , 7);
MA_UP := REF_COUNT = 7;

{交易量VOL: 判断3日内,出现金叉}
V5 := MA(VOL, 5);
V10 := MA(VOL, 10);
CROSS_COUNT := COUNT(CROSS(V5, V10), 3);
VOL_CROSS:= (CROSS_COUNT = 1) AND (V5> V10); {交易日5日线在10日以上,3日内有金叉}

{MACD中DIF >  DEA}
DIF := EMA(CLOSE, 12) - EMA(CLOSE, 26);
DEA := EMA(DIF, 9);
MACD_UP:= DIF > DEA ;

COND1 :=
	    HIGH_3 = CLOSE_3 AND {最高价=收盘价,代表涨停}
		GAOKAI AND {高开}
		MA_UP AND
		VOL_CROSS AND
		MACD_UP AND
		TANDLY
		;

PRINT : COND1
;

公式2:《一日大阳,第二日T阳线,三日必大涨》

{日期:通达信中日期的计算方式是DATE=(YEAR - 1900)*10000 + MONTH*100 + DAY}
DATE_TODAY  := NN;  {2024 - 1900 = 124, 11月13日对应的数值}
DATE_NEXDAY := MM;  {2024 - 1900 = 124, 11月14日对应的数值}

{高开:判断日期并比较价格,即14日的最低价 > 前一日的最高价}
HIGH_3  := REF(HIGH,  BARSLAST(DATE = DATE_TODAY));
CLOSE_3 := REF(CLOSE, BARSLAST(DATE = DATE_TODAY));

LOW_4   := REF(LOW,   BARSLAST(DATE = DATE_NEXDAY));
HIGH_4  := REF(HIGH,  BARSLAST(DATE = DATE_NEXDAY));
OPEN_4  := REF(OPEN,  BARSLAST(DATE = DATE_NEXDAY));
CLOSE_4 := REF(CLOSE, BARSLAST(DATE = DATE_NEXDAY));
GAOKAI := LOW_4 > HIGH_3;

{14日线图为T型,或上长阴线}
TANDLY := (                              {T型阳}
		   (CLOSE_4 = HIGH_4) AND        {收盘价=最高价}
		   (HIGH_4 - OPEN_4)*3 <= (OPEN_4 - LOW_4)  {最高价-开盘价*3 < 开盘价-最低价,说明是T型}
		  )
; 



{MA:计算MA5、MA10、MA20、MA60均线,7日内呈正向上升爬坡}
MA5 := MA(CLOSE, 5);
MA10 := MA(CLOSE, 10);
MA20 := MA(CLOSE, 20);
MA60 := MA(CLOSE, 60);
{获取当前位置往前推7个交易日的范围判断条件}
REF_COUNT := COUNT(MA5 > MA10 AND MA10 > MA20 AND MA20 > MA60 , 7);
MA_UP := REF_COUNT = 7;

{交易量VOL: 判断3日内,出现金叉}
V5 := MA(VOL, 5);
V10 := MA(VOL, 10);
CROSS_COUNT := COUNT(CROSS(V5, V10), 3);
VOL_CROSS:= (CROSS_COUNT = 1) AND (V5> V10); {交易日5日线在10日以上,3日内有金叉}

{MACD中DIF >  DEA}
DIF := EMA(CLOSE, 12) - EMA(CLOSE, 26);
DEA := EMA(DIF, 9);
MACD_UP:= DIF > DEA ;

COND1 :=
	    HIGH_3 = CLOSE_3 AND {最高价=收盘价,代表涨停}
		GAOKAI AND {高开}
		MA_UP AND
		VOL_CROSS AND
		MACD_UP AND
		TANDLY
		;

PRINT : COND1
;

按条件进行选股

点击《执行选股》
设置参数

可以点击计算参数的箭头,设置NN开始时间和MM结束时间,注意NN为前一交易日,MM为后一交易日,如:
NN=1241113,即为:2024年11月13日,则MM必须为1241114,即:2024年11月14日。

<think>好的,用户的问题是关于选股公式股票筛选、计算方法和量化交易的。首先,我需要明确用户的需求,可能是想了解如何构建有效的选股模型,或者学习量化交易中的股票筛选方法。用户可能是投资者或者对量化交易感兴趣的人,希望找到实用的选股策略。 接下来,我应该考虑选股公式的常见类型,比如基本面分析和技术指标。基本面分析通常涉及财务数据,如市盈率、市净率、ROE等,而技术指标可能包括移动平均线、RSI、MACD等。用户可能需要具体的公式和如何应用这些指标的例子。 然后,量化交易中的计算方法,可能需要提到多因子模型和风险平价模型。这部分需要解释每个模型的原理,并提供数学公式,比如多因子模型中的综合评分公式,以及风险平价模型中的权重分配公式。同时,代码示例会帮助用户实际应用这些模型,比如用Python计算指标。 用户可能还需要知道如何回测和优化选股策略,这部分需要说明回测的步骤,包括历史数据测试、参数优化和风险指标的计算,如夏普比率。此外,数据处理的重要性也不能忽视,包括数据清洗和特征工程的方法。 需要确保回答结构清晰,分点说明不同的方法和步骤,每个部分之间有换行。同时,避免使用第一人称和步骤词汇,按照要求组织内容。代码和公式的格式要正确,行内公式用$符号,独立公式用$$,代码块用三个反引号并注明语言类型。 最后,生成相关问题时要基于用户的问题和回答内容,可能涉及具体指标的应用、量化平台的推荐、回测常见错误、处理数据异常的方法等。确保问题相关且有实际意义,帮助用户进一步探索主题。</think>针对选股公式和量化交易中的股票筛选,可通过以下方法实现高效策略构建: **基本面筛选公式** 常用财务指标组合公式为: $$Score = 0.3*\frac{PE_{industry}}{PE} + 0.4*\frac{ROE}{ROE_{industry}} + 0.3*\frac{RevenueGrowth}{RevenueGrowth_{industry}}$$ 其中$PE$为市盈率,$ROE$为净资产收益率。该公式通过行业相对值评估股票价值,权重系数可根据策略调整。 **技术指标组合** 典型双指标筛选方案: ```python # 布林带与RSI组合策略 def technical_screen(df): df['MA20'] = df['Close'].rolling(20).mean() df['Upper'] = df['MA20'] + 2*df['Close'].rolling(20).std() df['Lower'] = df['MA20'] - 2*df['Close'].rolling(20).std() df['RSI'] = ta.momentum.RSIIndicator(df['Close'], window=14).rsi() return df[(df['Close'] < df['Lower']) & (df['RSI'] < 30)] ``` **多因子量化模型** 建立因子库包含: - 价值因子:$EV/EBITDA$ - 质量因子:$ROIC-WACC$ - 动量因子:$Price_{t}/Price_{t-63}-1$ 通过多元线性回归确定因子权重: $$Return = \alpha + \beta_1F_1 + \beta_2F_2 + ... + \beta_nF_n + \epsilon$$ **风险控制模块** 头寸分配采用风险平价模型: $$w_i = \frac{1/\sigma_i}{\sum_{j=1}^n 1/\sigma_j}$$ 其中$\sigma_i$表示资产i的历史波动率。配合止损机制设置动态阈值: $StopLoss = EntryPrice * (1 - MaxDrawdown/\sqrt{PositionDays})$ **策略回测框架** 关键验证指标包括: - 年化收益率 > 20% - 夏普比率 ≥ 1.5 - 最大回撤 < 25% - 胜率 > 55% 可通过walk-forward优化防止过拟合,设置参数敏感度测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值