hadoop streaming编程简单入门示例

火山日常啰嗦
hadoop streaming是什么?为什么要用hadoop streaming?hadoop streaming怎么用?接下来我们就来解决这些问题。

1、首先,hadoop streaming是一种编程工具,它是由hadoop提供的。
2、为什么要用hadoop streaming呢?
hadoop框架是用java语言写的,也就是说,hadoop框架中运行的所有应用程序都要用java语言来写才能正常地在hadoop集群中运行。那么问题来了,如果有些开发者就是不会java语言,但是又想使用mapreduce这个并行计算模型的话,那该怎么办?
1)就是基于这样的考虑,所以hadoop提供了hadoop streaming这个编程工具,它支持用任何编程语言来编写mapreduce的map函数和reduce函数。
2)但是,map/reduce函数的数据流必须遵循相应编程语言的标准输入输出(stdin、stdout),即你用什么编程语言实现业务逻辑,就必须要通过该语言的标准输入stdin读取数据,通过该语言的标准输出stdout输出数据。
3) 比如对于unix/linux,cat、awk、grep等这些都可以做为标准输入获取数据,而诸如重定向符>、>>、管道符(|)等都可以作为标准输出。
而对于c++,标准输入时cin,标准输出是cout

hadoop streaming的数据流:
hadoop streaming是如何处理数据的?
hadoop streaming通过用户编写的map函数中标准输入读取数据(一行一行地读取),按照mapd函数的处理逻辑处理后,将处理后的数据由标准输出进行输出到下一个阶段,reduce函数也是按行读取数据,按照函数的处理逻辑处理完数据后将它们通过标准输出写到hdfs的指定目录中。

ps:不管使用的是何种编程语言,在map函数中,原始数据会被处理成<key,value>的形式,但是key与value之间必须通过 分隔符分隔,分隔符左边的是key,分隔符右边的是value,如果没有使用 分隔符,那么整行都会被当作key处理。

3、理解了前两个问题后,我们对hadoop streaming已经有了基本的了解,接下来就应该了解该如何使用hadoop streaming这个编程工具了。
先通过linux shell查看一下它的用法:

可以看到它的用法是:$HADOOP_HOME/bin jar hadoop-streaming.jar [options]
options是可选项
例子1:
以shell命令作为mapper类以及 reducer类的实现

hadoop jar ../share/hadoop/tools/lib/hadoop-streaming-2.7.3.jar 

-input /hadoop-streaming/*
-output /hadoop-output
-mapper /bin/cat
-reducer /bin/wc

ps1:每行最后的符号的作用是转义,将换行符转以为普通字符,因为我们不想在一行中输完全部内容,所以用转义字符转义换行符,以在下行行中输入未输完的内容

ps2:输入文件必须在hdfs上,输出也是输出到hdfs上

ps3:为了避免发生函数脚本找不到的问题,最好使用-file参数,将脚本文件提交到集群中

例子2:
以shell脚本作为mapper和reducer的实现:
mapper.sh

#!/bin/bash
cat

reducer.sh
#!/bin/bash
wc

运行:

hadoop jar ../share/hadoop/tools/lib/hadoop-streaming-2.7.3.jar 

-input /hadoop-streaming/*
-output /hadoop-output
-mapper mapper.sh
–reducer reducer.sh
-file mapper.sh
-file reducer.sh

例子3:
mapper和reducer以shell脚本处理较复杂的逻辑,如单词统计,每行都有多个单词
mapper.sh

#!/bin/bash
while read line
do
    for word in $line
    do
        echo $word  1
    done
done

reducer.sh

#!/bin/bash
count=0
read word1
reduce-word=`echo $word1 | awk  $1`
while read word2
do
    map-word=`echo $-word | awk  $1`
    if [ $reduce-word = $map-word ]
        count=count+1
    else
         echo $reduce-word  $count
         count=0
          reduce-word=map-word
          count=count+1
     fi
done

运行:

hadoop jar ../share/hadoop/tools/lib/hadoop-streaming-2.7.3.jar 

-input /hadoop-streaming/*
-output /hadoop-output
-mapper mapper.sh
-reducer reducer.sh
-file mapper.sh
-file reducer.sh

作者:_火山
链接:https://www.jianshu.com/p/c3fc0400406d
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值