Redis+Caffeine多级缓存架构代码实战

  1. 构建本地Caffeine缓存
 private final Cache<String, String> LOCAL_CACHE = Caffeine.newBuilder()
            .initialCapacity(1024)
            .maximumSize(10_000L) // 最大 10000 条
            // 缓存 5 分钟后移除
            .expireAfterWrite(Duration.ofMinutes(5))
            .build();

Caffeine 简介

Caffeine 是一个高性能、轻量级的本地缓存库,主要用于 Java 应用中,用来替代像 Guava Cache 更高效的实现。下面是对 Caffeine 及其用法的快速概述:

  1. 基本概念

    • Caffeine 通过构建器模式(Caffeine.newBuilder())来创建缓存实例。
    • 支持多种缓存失效策略,比如大小限制、自动过期、弱/软引用等。
  2. 常用配置参数

    • initialCapacity(int capacity):设置缓存容器的初始容量,优化内存分配。
    • maximumSize(long size):限定缓存中条目的最大数量。当缓存达到这个上限时,会根据使用频率(LRU-like 策略)将部分条目驱逐。
    • expireAfterWrite(Duration duration):设置一个条目在写入缓存后多长时间失效,比如上面例子中设置了 5 分钟后自动移除。
    • 另外还有 expireAfterAccess(Duration duration)(根据访问时间失效)、refreshAfterWrite(Duration duration)(定时刷新)、以及基于引用的弱引用和软引用策略等,可以根据需求配置。
  3. 使用示例
    在代码片段中,构建了一个字符串键值的缓存实例,设置了初始容量为 1024 条、最大存储条数为 10,000 条,并且在写入后 5 分钟会自动过期:
    使用时,只需要调用 LOCAL_CACHE.get(key, mappingFunction) 来获得缓存中的数据(如果数据不存在,可以通过 mappingFunction 计算后添加到缓存中),或是使用 put(key, value) 手动存放数据。

    例如:

     // 存数据
     LOCAL_CACHE.put("user:1", "Alice");
     
     // 取数据
     String value = LOCAL_CACHE.getIfPresent("user:1");
  1. 高级功能

    • LoadingCache:如果你希望缓存在缺失某个 key 时自动加载数据,可以使用 Caffeine.build(CacheLoader) 来构建一个 LoadingCache。
    • 监听器:Caffeine 还支持在缓存条目被移除时触发特定的回调(removalListener)。
    • 异步缓存:可以用到 Caffeine 的 AsyncCache,解决异步加载场景。
  2. 性能优势

    • Caffeine 采用了各种高效的策略进行缓存存储和驱逐,能够在并发场景下保持高效性和低延时。
    • 其设计使得 GC 开销较低,并支持自定义缓存策略,能满足多种业务需求。
 /**
     * 分页获取图片列表(封装类,有缓存)
     */
    @Deprecated
    @PostMapping("/list/page/vo/cache")
    public BaseResponse<Page<PictureVO>> listPictureVOByPageWithCache(@RequestBody PictureQueryRequest pictureQueryRequest,HttpServletRequest request) {
        long current = pictureQueryRequest.getCurrent();
        long size = pictureQueryRequest.getPageSize();
        // 限制爬虫
        ThrowUtils.throwIf(size > 20, ErrorCode.PARAMS_ERROR);
        // 普通用户默认只能看到审核通过的数据
        pictureQueryRequest.setReviewStatus(PictureReviewStatusEnum.PASS.getValue());
        // 查询缓存,缓存中没有,再查询数据库
        // 构建缓存的 key
        String queryCondition = JSONUtil.toJsonStr(pictureQueryRequest);
        String hashKey = DigestUtils.md5DigestAsHex(queryCondition.getBytes());
        String cacheKey = String.format("listPictureVOByPage:%s", hashKey);
        // 1. 先从本地缓存中查询
        String cachedValue = LOCAL_CACHE.getIfPresent(cacheKey);
        if (cachedValue != null) {
            // 如果缓存命中,返回结果
            Page<PictureVO> cachedPage = JSONUtil.toBean(cachedValue, Page.class);
            return ResultUtils.success(cachedPage);
        }
        // 2. 本地缓存未命中,查询 Redis 分布式缓存
        ValueOperations<String, String> opsForValue = stringRedisTemplate.opsForValue();
        cachedValue = opsForValue.get(cacheKey);
        if (cachedValue != null) {
            // 如果缓存命中,更新本地缓存,返回结果
            LOCAL_CACHE.put(cacheKey, cachedValue);
            Page<PictureVO> cachedPage = JSONUtil.toBean(cachedValue, Page.class);
            return ResultUtils.success(cachedPage);
        }
        // 3. 查询数据库
        Page<Picture> picturePage = pictureApplicationService.page(new Page<>(current, size),
                pictureApplicationService.getQueryWrapper(pictureQueryRequest));
        Page<PictureVO> pictureVOPage = pictureApplicationService.getPictureVOPage(picturePage, request);
        // 4. 更新缓存
        // 更新 Redis 缓存
        String cacheValue = JSONUtil.toJsonStr(pictureVOPage);
        // 设置缓存的过期时间,5 - 10 分钟过期,防止缓存雪崩
        int cacheExpireTime = 300 + RandomUtil.randomInt(0, 300);
        opsForValue.set(cacheKey, cacheValue, cacheExpireTime, TimeUnit.SECONDS);
        // 写入本地缓存
        LOCAL_CACHE.put(cacheKey, cacheValue);
        // 获取封装类
        return ResultUtils.success(pictureVOPage);
    }

下面是对该代码中采用缓存策略的详细阐述:


1. 方法的基本职责

该方法主要用于分页获取图片列表,并对查询结果进行缓存。返回结果为一个封装了分页数据(PictureVO 对象列表)的响应。


2. 参数及校验

  • 分页参数获取与限制

    • 从请求中获取当前页码(current)和每页条数(size)。
    • 为防止爬虫或恶意请求,方法内部对每页返回的数据量做了限制:若 size 大于 20,则抛出异常(通过 ThrowUtils.throwIf 方法)。
  • 设置查询条件

    • 普通用户只能获取审核通过的数据,因此会预先设置 pictureQueryRequest.setReviewStatus(PictureReviewStatusEnum.PASS.getValue()),确保返回的图片已通过审核。

3. 构建缓存 Key

  • 查询条件的序列化

    • 将 pictureQueryRequest 对象序列化为 JSON 字符串,这样能确保所有参数都参与缓存 key 的生成,保证不同的查询条件对应不同的缓存数据。
  • 生成 MD5 摘要

    • 利用 MD5 算法(DigestUtils.md5DigestAsHex)对 JSON 字符串进行摘要,生成一个固定长度的散列值,作为缓存 key 的一部分。
  • 最终缓存 Key 格式

    • 组合散列值和前缀(例如 “listPictureVOByPage:”),形成最终缓存 key。这样做不仅便于区分缓存数据的来源,同时也确保 key 的唯一性。

4. 两级缓存策略

该方法采用了两级缓存机制来提高查询效率和降低数据库的访问压力:

  • 在每次返回缓存/数据之前,先更新缓存
4.1. 一级缓存——本地缓存(Caffeine)
  • 操作方式

    • 通过 LOCAL_CACHE.getIfPresent(cacheKey) 先查询本地缓存(由 Caffeine 实现)是否存在缓存数据。
    • 如果缓存命中,则直接将 JSON 字符串反序列化成 Page 对象并返回响应。
  • 优点

    • 本地缓存数据访问速度非常快,能够有效降低延迟。
    • 适用于单机环境下的高并发场景,有效减少对分布式缓存或数据库的访问次数。
4.2. 二级缓存——Redis 分布式缓存
  • 操作方式

    • 若本地缓存未命中,再到 Redis 中查找(通过 stringRedisTemplate.opsForValue().get(cacheKey))。
    • 如果 Redis 命中,则:
      • 更新本地缓存(保证本地缓存与 Redis 数据一致)。
      • 反序列化返回数据,并构造响应。
  • 优点

    • Redis 作为分布式缓存,能够在多机环境下共享缓存数据。
    • 对于跨进程或跨实例的缓存访问,Redis 提供了较好的性能及数据一致性。

5. 数据库查询与缓存更新

当两级缓存都未命中时,执行数据库查询并更新缓存:

  • 数据库查询

    • 调用 pictureApplicationService.page(...) 查询数据库,获取 Picture 数据分页结果。
    • 使用 pictureApplicationService.getPictureVOPage(...) 方法将数据库查询结果转换为展示页面所需的 PictureVO 分页数据。
  • 缓存更新策略

    • Redis 缓存更新

      • 将查询结果转换为 JSON 字符串存入 Redis。
      • 缓存过期时间设置为 5 至 10 分钟之间(300 + randomInt(0, 300) 秒),这种随机策略有助于防止缓存雪崩,即避免大量缓存同时失效带来的数据库压力。
    • 本地缓存更新

      • 同步将 Redis 缓存中的数据写入 Caffeine 本地缓存,保证后续对该 key 的调用首先命中本地缓存。

6. 防止缓存雪崩与缓存穿透

  • 缓存雪崩

    • 通过为 Redis 缓存设置随机过期时间,使得缓存的数据不会在同一时间大面积失效,从而分散对数据库的瞬时压力。
  • 缓存穿透

    • 通过在本地及 Redis 层都提前查询缓存,尽可能减少对数据库的直接访问,同时结合查询参数限制和数据一致性的设计,也能降低缓存穿透的风险。

7. 总结

在这里插入图片描述

  • 使用 MD5 对查询参数进行 hash 化,确保缓存 key 唯一性;
  • 实现了两级缓存(本地缓存 + Redis 分布式缓存),提高数据查询速度并降低数据库压力;
  • 设置适当的缓存过期时间和随机化TTL,防止缓存雪崩;
  • 对查询参数进行严格校验,既保护系统资源,又确保用户只能获取符合审核要求的数据。

这种双缓存策略属于常见的“先查询本地缓存,再查询分布式缓存,最后查询数据库,更新缓存”的应用场景,适用于高并发系统中对响应时间和数据一致性要求较高的场景。

注意

缓存中存储的是通过 JSONUtil.toJsonStr(pictureVOPage) 序列化后的 JSON 字符串,而这个过程往往会将对象中默认值、null 值或者部分未被标记为需要序列化的数据过滤掉,从而使数据量变小。
而直接从数据库查询得到的对象(或经过业务转换的对象)可能包含更多的字段(比如额外的分页元数据、内部状态或调试信息等),这些数据在序列化时如果不做处理,可能会被完整返回。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值