索引分为聚簇索引和非聚簇索引。
如果要找"fire”这个单词,会翻到书后面的附录,这个附录是按字母排序的,找到F字母那一块,再找到"fire”,对应的会是它在第几课。这个附录,为“非聚簇索引”。
由此可见,聚簇索引,索引的顺序就是数据存放的顺序,所以,很容易理解,一张数据表只能有一个聚簇索引。
聚簇索引要比非聚簇索引查询效率高很多,特别是范围查询的时候。所以,至于聚簇索引到底应该为主键,还是其他字段,这个可以再讨论。
1、MYSQL的索引
mysql中,不同的存储引擎对索引的实现方式不同,大致说下MyISAM和InnoDB两种存储引擎。
MyISAM的B+Tree的叶子节点上的data,并不是数据本身,而是数据存放的地址。主索引和辅助索引没啥区别,只是主索引中的key一定得是唯一的。这里的索引都是非聚簇索引。
MyISAM还采用压缩机制存储索引,比如,第一个索引为“her”,第二个索引为“here”,那么第二个索引会被存储为“3,e”,这样的缺点是同一个节点中的索引只能采用顺序查找。
InnoDB的数据文件本身就是索引文件,B+Tree的叶子节点上的data就是数据本身,key为主键,这是聚簇索引。非聚簇索引,叶子节点上的data是主键(所以聚簇索引的key,不能过长)。为什么存放的主键,而不是记录所在地址呢,理由相当简单,因为记录所在地址并不能保证一定不会变,但主键可以保证。
至于为什么主键通常建议使用自增id呢?
2、聚簇索引
聚簇索引的数据的物理存放顺序与索引顺序是一致的,即:只要索引是相邻的,那么对应的数据一定也是相邻地存放在磁盘上的。如果主键不是自增id,那么可以想象,它会干些什么,不断地调整数据的物理地址、分页,当然也有其他一些措施来减少这些操作,但却无法彻底避免。但,如果是自增的,那就简单了,它只需要一页一页地写,索引结构相对紧凑,磁盘碎片少,效率也高。
聚簇索引不但在检索上可以大大滴提高效率,在数据读取上也一样。比如:需要查询f~t的所有单词。
一个使用MyISAM的主索引,一个使用InnoDB的聚簇索引。两种索引的B+Tree检索时间一样,但读取时却有了差异。
因为MyISAM的主索引并非聚簇索引,那么他的数据的物理地址必然是凌乱的,拿到这些物理地址,按照合适的算法进行I/O读取,于是开始不停的寻道不停的旋转。聚簇索引则只需一次I/O。
不过,如果涉及到大数据量的排序、全表扫描、count之类的操作的话,还是MyISAM占优势些,因为索引所占空间小,这些操作是需要在内存中完成的。
鉴于聚簇索引的范围查询效率,很多人认为使用主键作为聚簇索引太多浪费,毕竟几乎不会使用主键进行范围查询。但若再考虑到聚簇索引的存储,就不好定论了。
下表给出了何时使用聚簇索引与非聚簇索引:
动作 | 使用聚簇索引 | 使用非聚簇索引 |
列经常被分组排序 | 应 | 应 |
返回某范围内的数据 | 应 | 不应 |
一个或极少不同值 | 不应 | 不应 |
小数目的不同值 | 应 | 不应 |
大数目的不同值 | 不应 | 应 |
频繁更新的列 | 不应 | 应 |
外键列 | 应 | 应 |
主键列 | 应 | 应 |
频繁修改索引列 | 不应 | 应 |
根据调优实践,要注意聚簇索引的选择。首先我们要找到我们最多用到的SQL查询,像本例就是那句类似的组合条件查询的情况,这种情况最好使用组合聚簇索引,而且最多用到的字段要放在组合聚簇索引的前面,否则的话就索引就不会有好的效果。
Index seek 为什么比 Index scan好?
索引扫描也就是遍历B树,而seek是B树查找直接定位。
Index scan多半是出现在索引列在表达式中。数据库引擎无法直接确定你要的列的值,所以只能扫描整个整个索引进行计算。index seek就要好很多.数据库引擎只需要扫描几个分支节点就可以定位到你要的记录。回过来,如果聚集索引的叶子节点就是记录,那么Clustered Index Scan就基本等同于full table scan。
一些优化原则
1、缺省情况下建立的索引是非聚簇索引,但有时它并不是最佳的。在非群集索引下,数据在物理上随机存放在数据页上。合理的索引设计要建立在对各种查询的分析和预测上。一般来说:
a.有大量重复值、且经常有范围查询( > ,< ,> =,< =)和order by、group by发生的列,可考
虑建立群集索引;
b.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;
c.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。索引虽有助于提高性能但不是索引越多越好,恰好相反过多的索引会导致系统低效。用户在表中每加进一个索引,维护索引集合就要做相应的更新工作。
2、ORDER BY和GROPU BY使用ORDER BY和GROUP BY短语,任何一种索引都有助于SELECT的性能提高。
3、多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘积最小为最佳方案。
4、任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
5、IN、OR子句常会使用工作表,使索引失效。如果不产生大量重复值,可以考虑把子句拆开。拆开的子句中应该包含索引。
建立聚簇索引的思想
1、大多数表都应该有聚簇索引或使用分区来降低对表尾页的竞争,在一个高事务的环境中,对最后一页的封锁严重影响系统的吞吐量。
2、在聚簇索引下,数据在物理上按顺序排在数据页上,重复值也排在一起,因而在那些包含范围检查(between、<、<=、>、>=)或使用group by或orderby的查询时,一旦找到具有范围中第一个键值的行,具有后续索引值的行保证物理上毗连在一起而不必进一步搜索,避免了大范围扫描,可以大大提高查询速度。
3、 在一个频繁发生插入操作的表上建立聚簇索引时,不要建在具有单调上升值的列(如IDENTITY)上,否则会经常引起封锁冲突。???
4、在聚簇索引中不要包含经常修改的列,因为码值修改后,数据行必须移动到新的位置。
5、选择聚簇索引应基于where子句和连接操作的类型。
聚簇索引的侯选列
1、主键列,该列在where子句中使用并且插入是随机的。
2、按范围存取的列,如pri_order > 100 and pri_order < 200。
3、在group by或order by中使用的列。
4、不经常修改的列。
5、在连接操作中使用的列。
非聚簇索引
非聚簇索引,叶级页指向表中的记录,记录的物理顺序与逻辑顺序没有必然的联系。非聚簇索引则更像书的标准索引表,索引表中的顺序通常与实际的页码顺序是不一致的。
每个表只能有一个聚簇索引,因为一个表中的记录只能以一种物理顺序存放。但是,一个表可以有不止一个非聚簇索引。实际上,对每个表你最多可以建立249个非聚簇索引。非聚簇索引需要大量的硬盘空间和内存。另外,虽然非聚簇索引可以提高从表中取数据的速度,它也会降低向表中插入和更新数据的速度。每当你改变了一个建立了非聚簇索引的表中的数据时,必须同时更新索引。因此你对一个表建立非聚簇索引时要慎重考虑。如果你预计一个表需要频繁地更新数据,那么不要对它建立太多非聚簇索引。另外,如果硬盘和内存空间有限,也应该限制使用非聚簇索引的数量
非聚簇索引的使用
SQLServer缺省情况下建立的索引是非聚簇索引,由于非聚簇索引不重新组织表中的数据,而是对每一行存储索引列值并用一个指针指向数据所在的页面。换句话说非聚簇索引具有在索引结构和数据本身之间的一个额外级。一个表如果没有聚簇索引时,可有250个非聚簇索引。每个非聚簇索引提供访问数据的不同排序顺序。在建立非聚簇索引时,要权衡索引对查询速度的加快与降低修改速度之间的利弊。另外,还要考虑这些问题:
1、索引需要使用多少空间。
2、合适的列是否稳定。
3、索引键是如何选择的,扫描效果是否更佳。
4、是否有许多重复值。
对更新频繁的表来说,表上的非聚簇索引比聚簇索引和根本没有索引需要更多的额外开销。对移到新页的每一行而言,指向该数据的每个非聚簇索引的页级行也必须更新,有时可能还需要索引页的分理。从一个页面删除数据的进程也会有类似的开销,另外,删除进程还必须把数据移到页面上部,以保证数据的连续性。所以,建立非聚簇索引要非常慎重。非聚簇索引常被用在以下情况:
1、某列常用于集合函数(如Sum,....)。
2、某列常用于join,order by,group by。
3、查寻出的数据不超过表中数据量的20%。
---------------------------
聚簇索引并不是一种单独的索引类型,而是一种数据存储方式。具体的细节依赖于其实现方式,但innoddb 的聚簇索引实际上在同一个结构中保存了B-Tree索引和数据行。
当表有聚簇索引时,它的数据实际上存放在索引的叶子页(leaf page)中。术语‘聚簇’表示数据行和相邻的键值进错的存储在一起。因为无法同时把数据行存放在两个不同的地方,所以在一个表中只能有一个聚簇索引 (不过,覆盖索引可以模拟多个聚簇索引的情况)。
因为存储引擎负责实现索引,因此不是所有的存储引擎都支持聚簇索引。
一些数据库服务器允许选择哪个索引作为聚簇索引,但直到本书协写作之前,还没有任何一个MySQL内建的存储引擎支持这一点。InnoDb将通过主键聚集数据。
如果没有定义主键,InnoDB 会选择一个唯一的非空索引代替。如果没有这样的索引,InnoDB 会隐式定义一个主键来作为聚簇索引。InnoDB值聚集在同一个页面中的记录。。包含相邻键值的页面可能会相距很远。
聚簇索引可能对性能有帮助,但也可能导致严重的性能问题。所以需要咨询的考虑聚簇索引,尤其是将表的存储引擎从InnoDB 该成其他的引擎的时候(返回来也一样)。
聚簇索引的一些重要优点:
可以吧相关的数据保存在一起。例如,实现电子邮箱时,可以根据用户id来聚集数据这样只需要从磁盘读取少数的数据页就能获取某个用户的全部邮件。如果没有使用聚簇索引,则每封邮件都肯能导致一次io。
数据访问更快。聚簇索引将索引和数据保存在同一个B-Tree中,因此从聚簇索引中获取数据通常比非聚簇索引中快。
使用覆盖索引扫描的查询可以直接使用页节点中的主键值。
聚簇索引的缺点:
聚簇索引最大限度的提高了io密集型应用的性能,但如果数据全部存放在内存中,则访问的顺序就没那么重要了,聚簇索引也就没有什么优势了。
插入速度严重依赖插入顺序。按照主键的顺序插入是加载数据到innodb表中速度最快的方式。但如果不是按照主键顺序加载数据,那么加载完成后最好使用OPTIMIZE TABLE 命令来重新组织一下表。
更新聚簇索引的代价很高,因为会强制InooDB将每个更新的数据移动到新的位置。
基于聚簇索引的表在插入行,或者主键被更新导致需要移动行的时候,可能面临’页分裂(page split)‘的问题。当行的主键值要求必须将这一行插入到某个已满的页中时。存储引擎,存储引擎会将该页分裂成两个页面来容纳该行,这就是一次页分裂操作。页分裂会导致表占用更多的存储空间。
聚簇索引可能导致全表扫描变慢,尤其是行比较稀疏,或者由于页分裂导致数据存储不连续的时候。
二级索引(非聚簇索引)可能比想象的要更大,因为在二级索引的子节点包含了最优一个几点可能让人有些疑惑,为什么二级索引需要两次索引查找?答案在于二级索引中保存的“行指针”的实质。要记住,二级索引叶子节点保存的不是只有物理位置的指针,而是行的主键值。
这意味着通过二级索引进行查找行,存储引擎需要找到二级索引的子节点获得对应的主键值,然后根据这个值去聚簇索引总超找到对应的行。这里做了重复的工作:两次B-Tree查找,而不是一次。对于InnoDB,自适应哈希索引能够减少这样重复工作。
InnoDB 和 MyISAM的数据分布对比
聚簇索引和非聚簇索引的数据分布有区别,以及对应的主键索引和二级索引的数据分布也有区别,通常会让人感到困惑和意外。来看看InnoDB和MyISAM是如何存储下面的这个表的:
CREATE TABLE layout_test(
col1 int not null,
col2 int not null,
primary key (col1),
key(col2)
);
假设该表的主键取值为1-1w,按照随机顺序插入,并使用OPTIMIZE TABLE命令做了优化。换句话说,数据在磁盘的存储方式已经最优,但进行的顺序是随机的。列col2的值时从1-100之间随机赋值,所以有很多重复的值。
MyISAM 的数据分布.。 MyISAM的数据分布非常简单,所以先介绍它。MyIsam按照数据插入的顺序存储在磁盘上。
实际上,MyISAM 中主键索引和其他索引在结构上没有什么不同。主键索引就是一个名为PRIMARY的唯一非空索引。
InnoDB 的数据分布。因为InnoDB支持聚簇索引,索引使用非常不同的方式存储同样的数据。在InnoDB中,聚簇索引“就是”表,所以不像myISAM那样需要独立的行存储。聚簇索引的每一个叶子节点都包含了主键值、事务id,用于事务和MVCC的回滚指针。这样的策略减少了当前出现行移动或者数据页分裂是二级索引的维护工作。使用主键值当作指针会让二级索引占用更多的存储空间,存储,换来的好处是,InnoDB在移动行时,无需更新二级索引中的这个指针。InnoDB 的非叶子节点包含了索引列和一个纸箱下级节点的指针(下级节点可以是叶子节点,也可以是非叶子节点)。这对聚簇索引和二级索引都使用。
在InnoDB表中按照主键顺序插入行
如果正在使用InnoDB 表并且没有什么数据需要聚集,那么可以定义一个代理键(surrogate key)作为主键,这种主键的数据应该和应用无关,组件的的方法是使用AUTO_INCREMENT自增列。这样可以保证数据行是按照顺序写入,对于根据主键做关联的操作性能也会更好。
最好避免随机的(不连续,且值的分布范围非常大的)聚簇索引,特别是对于io密集型的应用。例如,从性能的角度考虑,使用UUID来作为聚簇索引则会很糟糕:它使得聚簇索引的插入变得完全随机,这是最坏的情况,使得数据没有任何聚集特性。
因为主键的值时顺序的,索引InnoDB 把每一条记录都存储在上一条记录的后面。当达到页的最大填充因子时(InnoDB 默认的最大填充因子是页大小的15/16 ,留出部分空间用于以后修改),下一条记录就会写入到新的页中。一旦数据按照这种顺序的方式加载,主键页就会近似于被顺序的记录填满,这也正是所期望的结果(然而二级索引页可能不一样)。
使用UUID聚簇索引的表插入数据,因为新的行的主键值不一定比之前插入的大,所以InnoDB 无法简单的总是把新行插入到索引的最后,而是需要为新的行寻找到合适的位置--通常是已有数据的中间位置--并且分配空间。这会增加很多的额外操作。并导致数据分布不够优化。下面是总结的一些缺点:
写入的目标页可能已经数到磁盘上并从缓存中移除,或者是还没有被加载到缓存中,InnoDB在插入之前不得不先找到并从磁盘读取目标页到内存中。这将导致大量的磁盘io。
因为写入是乱序的,InnoDB 不得不频繁的做分页操作,以便为新的行分配空间。页分裂会导致移动大量数据,一次插入最少需要修改三个页面,而不是一个页。
由于频繁的页分裂,页会变得稀疏,并且被不规则的填充,所以最终数据会有碎片。
总结:使用InnoDB 时应该尽可能地按照主键顺序插入数据,并且尽可能地使用单调增加的聚簇键的值来插入新行。
http://blog.csdn.net/lijiaz5033/article/details/50129723
http://www.cnblogs.com/zhengyanqiu/p/4989955.html