编程不良人原版笔记 — https://blog.csdn.net/wei198621/article/details/111280555
part 01 hadoop 集群的搭建 – https://blog.csdn.net/wei198621/article/details/111167560
part 02 mapreduce 的学习 – https://blog.csdn.net/wei198621/article/details/111411463
相关笔记下载地址 ( 很少的费用 带来很多的收获 支持一下自己技术上的进步 支持一下陈兄 )
https://www.baizhiedu.xin/front/index#/main
Hadoop 从入门到精通----编程不良人 ( 25 小时 )
https://www.bilibili.com/video/BV17E411g7F2
java hdfs 操作hdfs库
https://github.com/wei198621/hdfs_by_baizhi
Hadoop
作者: 陈艳男
一. 引言
1.1 什么是大数据
大数据:(Big Data
):数据量级很大的应用处理。TB级 ,日数据增长GB级
K -- M---- G ---- T ----PB ---- EB ---ZB 1024
通过对海量数据进行分析,挖掘,进而发现数据内在的规律,从而为企业或者国家创造价值。
1.2 大数据特点
4V
是大数据典型的特点具体指的是:
# 1.Volume (大量)
数据量很大,至少是TB或者日均增加GB级
# 2.Variety (多样)
a.结构化数据 : 传统关系型数据库中的数据
b.半结构化数据: json xml mongodb存储的数据
c.非结构化数据: 音频 视频
# 3.Velocity(快速)
处理数据速度要快 注意:是相对速度快
# 4.Value (价值)
海量没有价值的数据中,分析出有价值的内容。
1.3 大数据的工作方向
# 1. 业务
电商的推荐系统,智能广告系统,专家系统,智慧城市,智能交通,金融大脑,智慧医疗,灾害预警....
# 2. 工作方向
大数据运维工程师,大数据开发工程师(实时计算,数据仓库,ETL,基本挖掘),数据分析师(算法)
1.4 大数据的起源
Google是最早面临大数据问题的公司。
1. GFS google File System
2. MapReduce
3. BigTable (NoSQL 数据库)
大数据起源可以说是google最早开源的3篇论文,开创了大数据时代
1.5 大数据处理的核心数据类型
大数据处理的核心数据类型通常为:
文本类型
1.6 大数据的数据来源
# 1.自己公司业务系统运行产生的日志 (nginx,log4j,数据库中的日志)
# 2.爬虫
# 3.行业数据 电信 医疗 政府.
1.7 大数据目前面临问题
# 1.存储
如何解决现有大数据中数据存储问题
# 2.统计|计算
如何解决现有大规模的数据集中统计和计算的问题
二. Hadoop的引言
2.1 解决问题
Hadoop
主要是用来解决大数据所面临的数据存储
和数据计算
的问题。
2.2 Hadoop诞生
2003-2004年,Google公布了部分GFS和MapReduce思想的细节,受此启发的Doug Cutting等人用2年的业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。然后Yahoo招安Doug Gutting及其项目。
2005年,Hadoop作为Lucene的子项目Nutch的一部分正式引入Apache基金会。
2006年2月被分离出来,成为一套完整独立的软件,起名为Hadoop
Hadoop名字不是一个缩写,而是一个生造出来的词。是Hadoop之父Doug Cutting儿子毛绒玩具象命名的。
Hadoop之父
Doug Cutting
,可能所有人都间接用过他的作品,他是Lucene
、Nutch
、Hadoop
等项目的发起人
。是他,把高深莫测的搜索技术形成产品,贡献给我们;还是他,打造了目前在云计算和大数据领域里如日中天的Hadoop。
# Haoop核心设计
HDFS (Hadoop Distribute File System) -------> GFS
MapReduce -------> MapReduce
HBase -------> Big Table
apache
组织正式开源,并将hadoop作为apache顶级的开源项目之一
2.3 Hadoop的发行版本
版本 | 是否收费 | 使用难度 |
---|---|---|
Apache 开源的Hadoop | 免费 | ★★★★☆ |
Clouder(CDH) | $4000 (1个节点) | ★★★☆☆ |
Hortonworks | $12500(10个节点) | ★★★☆☆ |
华为hadoop | 未知(内部使用) | ☆☆☆☆☆ |
注意:在实际开发中Appache的Hadoop企业实际使用并不多。最原始(基础)版本。但是却是学习hadoop的基础。
2.4 hadoop的生态圈
# 1.hadoop核心 HDFS,MapReduce
# 2.Hive 通过SQl语句形式执行mapreduce
# 3.Hbase Nosql数据库
# 4.Flume 日志采集工具
# 5.Sqoop sql to hadoop 将数据导入到hadoop中
# 6.Zookeeper 协调服务工具
# 7.Mahout 算法库
# 8.Pig 是MapReduce的一个抽象,它是一个工具/平台,用于分析较大的数据集,并将它们表示为数据流。
三.Hadoop的安装(单机)
说明: hadoop的核心为
HDFS
和MapReduce
3.1 Hadoop的核心之HDFS
3.1.1 HDFS引言
# HDFS (Hadoop Distribute File System): Hadoop 的分布式文件存储系统,他核心解决的大数据的存储问题
3.1.2 HDFS基本架构图
NameNode:
是整个HDFS集群的总入口,存储着HDFS的集群的文件元数据(如:client上传文件的文件名 副本数 块数等相关信息)。DataNode:
是真正用来负责存储数据的节点,一个DataNode就是一个真实的物理主机。Block:
数据块,为了能通过多个节点保存大数据集,HDFS将大数据集文件切分成一块块的数据块,在现有hadoop2版本中默认一个块大小为128M。
3.1.3 Hadoop的安装
准备环境
# 0. 安装centos7.x 虚拟机,并启动
# 1. 输入hostname 查看当前主机名
# 2. 使用vim /etc/hostname 修改主机名
# 3. 重启centos 系统 reboot
# 4. 查看修改之后的主机名 hostname
# 5. 添加主机名与ip映射 vim /etc/hosts
加入 ip(当前ip地址) centos(主机名)
# 6. 检测主机名ip配置是否生效
# 7.关闭防火墙
`systemctl stop firewalld
`systemctl disable firewalld
配置java环境变量
# 0.下载jdk
wget https://download.oracle.com/otn/java/jdk/8u231-b11/5b13a193868b4bf28bcb45c792fce896/jdk-8u231-linux-x64.rpm
# 1. 安装jdk文件
rpm -ivh jdk-8u231-linux-x64.rpm
# 2. 配置环境变量 vim /etc/profile
export JAVA_HOME=/usr/java/jdk1.8.0_171-amd64
export PATH=$PATH:$NODE_HOME/bin:$MAVEN_HOME/bin:$JAVA_HOME/bin
# 3. 重新载入配置
source /etc/profile
# 4. 检测配置是否生效
jps
java
javac
安装hadoop
# 0.下载hadoo
wget hadoop-2.9.2.tar.gz 注意:本次课程使用的事hadoop2.9.2版本 和 centos7.x
# 1. 上传hadoop软件包到系统中
hadoop-2.9.2.tar.gz
# 2. 解压到指定文件目录中
tar -zxvf hadoop-2.9.2.tar.gz -C /usr
# 3. 配置hadoop环境变量
export HADOOP_HOME=/usr/hadoop-2.9.2
export PATH=$PATH$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
# 4. 测试环境变量是否配置成功
直接输入hdfs命令查看效果
# 5. 查看hadoop的安装目录 tree -L 1 /usr/hadoop-2.9.2
[root@hadoop ~]# tree -L 2 hadoop-2.9.2
hadoop-2.9.2
├── bin
│ ├── container-executor
│ ├── hadoop
│ ├── hadoop.cmd
│ ├── hdfs
│ ├── hdfs.cmd
│ ├── mapred
│ ├── mapred.cmd
│ ├── rcc
│ ├── test-container-executor
│ ├── yarn
│ └── yarn.cmd
├── etc
│ └── hadoop
├── include
│ ├── hdfs.h
│ ├── Pipes.hh
│ ├── SerialUtils.hh
│ ├── StringUtils.hh
│ └── TemplateFactory.hh
├── lib
│ └── native
├── libexec
│ ├── hadoop-config.cmd
│ ├── hadoop-config.sh
│ ├── hdfs-config.cmd
│ ├── hdfs-config.sh
│ ├── httpfs-config.sh
│ ├── kms-config.sh
│ ├── mapred-config.cmd
│ ├── mapred-config.sh
│ ├── yarn-config.cmd
│ └── yarn-config.sh
├── LICENSE.txt
├── logs
│ ├── hadoop-root-datanode-hadoop.log
│ ├── hadoop-root-datanode-hadoop.out
│ ├── hadoop-root-datanode-hadoop.out.1
│ ├── hadoop-root-datanode-hadoop.out.2
│ ├── hadoop-root-datanode-hadoop.out.3
│ ├── hadoop-root-datanode-hadoop.out.4
│ ├── hadoop-root-datanode-hadoop.out.5
│ ├── hadoop-root-namenode-hadoop.log
│ ├── hadoop-root-namenode-hadoop.out
│ ├── hadoop-root-namenode-hadoop.out.1
│ ├── hadoop-root-namenode-hadoop.out.2
│ ├── hadoop-root-namenode-hadoop.out.3
│ ├── hadoop-root-namenode-hadoop.out.4
│ ├── hadoop-root-namenode-hadoop.out.5
│ ├── hadoop-root-secondarynamenode-hadoop.log
│ ├── hadoop-root-secondarynamenode-hadoop.out
│ ├── hadoop-root-secondarynamenode-hadoop.out.1
│ ├── hadoop-root-secondarynamenode-hadoop.out.2
│ ├── hadoop-root-secondarynamenode-hadoop.out.3
│ ├── hadoop-root-secondarynamenode-hadoop.out.4
│ ├── hadoop-root-secondarynamenode-hadoop.out.5
│ ├── SecurityAuth-root.audit
│ ├── userlogs
│ ├── yarn-root-nodemanager-hadoop.log
│ ├── yarn-root-nodemanager-hadoop.out
│ ├── yarn-root-nodemanager-hadoop.out.1
│ ├── yarn-root-nodemanager-hadoop.out.2
│ ├── yarn-root-nodemanager-hadoop.out.3
│ ├── yarn-root-nodemanager-hadoop.out.4
│ ├── yarn-root-nodemanager-hadoop.out.5
│ ├── yarn-root-resourcemanager-hadoop.log
│ ├── yarn-root-resourcemanager-hadoop.out
│ ├── yarn-root-resourcemanager-hadoop.out.1
│ ├── yarn-root-resourcemanager-hadoop.out.2
│ ├── yarn-root-resourcemanager-hadoop.out.3
│ ├── yarn-root-resourcemanager-hadoop.out.4
│ └── yarn-root-resourcemanager-hadoop.out.5
├── NOTICE.txt
├── README.txt
├── sbin
│ ├── distribute-exclude.sh
│ ├── FederationStateStore
│ ├── hadoop-daemon.sh
│ ├── hadoop-daemons.sh
│ ├── hdfs-config.cmd
│ ├── hdfs-config.sh
│ ├── httpfs.sh
│ ├── kms.sh
│ ├── mr-jobhistory-daemon.sh
│ ├── refresh-namenodes.sh
│ ├── slaves.sh
│ ├── start-all.cmd
│ ├── start-all.sh
│ ├── start-balancer.sh
│ ├── start-dfs.cmd
│ ├── start-dfs.sh
│ ├── start-secure-dns.sh
│ ├── start-yarn.cmd
│ ├── start-yarn.sh
│ ├── stop-all.cmd
│ ├── stop-all.sh
│ ├── stop-balancer.sh
│ ├── stop-dfs.cmd
│ ├── stop-dfs.sh
│ ├── stop-secure-dns.sh
│ ├── stop-yarn.cmd
│ ├── stop-yarn.sh
│ ├── yarn-daemon.sh
│ └── yarn-daemons.sh
└── share
├── doc
└── hadoop
bin 和 sbin
目录用来启动hdfs yarn 等可执行的脚本文件etc
目录用来存放hadoop的配置文件logs
目录用来存放hadoop的日志文件share
用来存放hadoop的依赖jar第三方jar目录lib
用来存放hadoop使用核心库文件
# 6.配置core-site.xml
vim /usr/hadoop-2.9.2/etc/hadoop/core-site.xml 加入如下配置:
<configuration>
<!--配置hdfs文件系统默认名称-->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop(主机名):9000</value>
</property>
</configuration>
注意:名称是一个HDFS的URL
# 7.配置hdfs-site.xml
vim /usr/hadoop-2.9.2/etc/hadoop/hdfs-site.xml 加入如下配置:
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
# 8.配置slaves文件
vim /usr/hadoop-2.9.2/etc/hadoop/slaves 加入如下配置:
hadoop (当前主机名)
# 9.格式化hdfs
hdfs namenode -format (仅仅是第一次使用需要格式化)
`出现如下错误: /usr/hadoop-2.9.2/bin/hdfs:行319: /usr/java/jdk1.8.0_171-amd64/bin//bin/java: 没有那个文件或目录`参考步骤10解决
注意:这里的格式化是格式成hadoop可以识别的文件系统,比如我们买了一块硬盘我们需要格式化成windows或者mac,linux系统识别的文件系统,才能使用这个文件系统。
# 10.配置etc/hadoop目录中中hadoop-env.sh
将原来export JAVA_HOME=$JAVA_HOME ====修改为jdk安装目录==> export JAVA_HOME=/usr/java/jdk1.8.0_171-amd64
# 11.启动HDFS
start-dfs.sh 启动
stop-dfs.sh 关闭
# 12. 查看hadoop是否启动成功
jps 存在以下进程名称说明启动成功
5876 SecondaryNameNode
5702 DataNode
5995 Jps
5612 NameNode
注意:只要能看到NameNode 和 DataNode 说明启动成功
# 13. 访问hdfs提供的web界面
http://IP地址:50070/
3.2 查看HDFS日志
# 1.进入hadoop安装目录中logs目录中
hadoop-root-namenode-hadoop.log ---- namenode日志
hadoop-root-datanode-hadoop.log ---- datanode日志
hadoop-root-secondarynamenode-hadoop.log ---- secondnamenode 日志
yarn-root-resourcemanager-hadoop.log ---- resourcemanager 日志
yarn-root-nodemanager-hadoop.log ---- nodemanager 日志
注意:针对于hdfs日志规则为hadoop-用户名-服务名-主机名.log,针对于后续学习的yarn生成规则为yarn-用户名-服务名-主机名.log
3.3 修改hdfs默认数据位置
- 说明: 通过查看日志得知namenode数据和datanode数据默认都是存放在/tmp//tmp/hadoop-root/dfs下,这对于我们来说是不安全的,因为tmp目录为临时目录,系统可能会定期清除目录中文件,因此为了保证数据安全修改数据默认的存放位置
# 1.修改hadoop安装目录下etc/hadoop/core-site.xml 加入如下配置
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/hadoop-2.9.2/data</value>
</property>
3.4 配置SSH免密登录
SSH 为 [Secure Shell](https://baike.baidu.com/item/Secure Shell) 的缩写,由 IETF 的网络小组(Network Working Group)所制定;SSH 为建立在应用层基础上的安全协议。
从客户端来看,SSH提供两种级别的安全验证。
3.4.1基于口令的安全验证
只要你知道自己帐号和口令,就可以登录到远程主机。所有传输的数据都会被加密,但是不能保证你正在连接的服务器就是你想连接的服务器。可能会有别的服务器在冒充真正的服务器,也就是受到“中间人”这种方式的攻击。
3.4.2 基于密匙的安全验证
需要依靠密匙,也就是你必须为自己创建一对密匙,并把公用密匙放在需要访问的服务器上。如果你要连接到SSH服务器上,客户端软件就会向服务器发出请求,请求用你的密匙进行安全验证。服务器收到请求之后,先在该服务器上你的主目录下寻找你的公用密匙,然后把它和你发送过来的公用密匙进行比较。如果两个密匙一致,服务器就用公用密匙加密“质询”(challenge)并把它发送给客户端软件。客户端软件收到“质询”之后就可以用你的私人密匙解密再把它发送给服务器。
注意:第二种级别不仅加密所有传送的数据,而且“中间人”这种攻击方式也是不可能的(因为他没有你的私人密匙)。但是整个登录的过程可能需要10秒 。
3.4.3 ssh 登录过程
3.4.4 配置ssh
# 1. 生成ssh秘钥对
ssh-keygen -t rsa 然后回车几次就可以啦
# 2. 查看秘钥对生成位置
ls /root/.ssh 会发现在home目录中生成了两个文件
id_rsa(私钥) id_rsa.pub(公钥)
# 3. 将公钥加入另一台机器的受信列表中
ssh-copy-id hadoop(主机名)
cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys (和上面命令一样)
# 4. 再次查看/root/.ssh 目录 多出两个文件其中authorized_keys就是存放公钥列表文件
authorized_keys id_rsa id_rsa.pub known_hosts
# 5. 检测是否配置成功
ssh hadoop 不需要输入密码即可
四. HDFS的基本操作
4.1 Shell基本操作
4.1.1 命令总结
[root@hadoop ~]# hdfs dfs
Usage: hadoop fs [generic options]
[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]
[-checksum <src> ...]
[-chgrp [-R] GROUP PATH...]
[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
[-chown [-R] [OWNER][:[GROUP]] PATH...]
[-copyFromLocal [-f] [-p] [-l] [-d] <localsrc> ... <dst>]
[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] <path> ...]
[-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>]
[-createSnapshot <snapshotDir> [<snapshotName>]]
[-deleteSnapshot <snapshotDir> <snapshotName>]
[-df [-h] [<path> ...]]
[-du [-s] [-h] [-x] <path> ...]
[-expunge]
[-find <path> ... <expression> ...]
[-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
[-getfacl [-R] <path>]
[-getfattr [-R] {
-n name | -d} [-e en] <path>]
[-getmerge [-nl] [-skip-empty-file] <src> <localdst>]
[-help [cmd ...]]
[-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [<path> ...]]
[-mkdir [-p] <path> ...]
[-moveFromLocal <localsrc> ... <dst>]
[-moveToLocal <src> <localdst>]
[-mv <src> ... <dst>]
[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>]
[-renameSnapshot <snapshotDir> <oldName> <newName>]
[-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...]
[-rmdir [--ignore-fail-on-non-empty] <dir> ...]
[-setfacl [-R] [{
-b|-k} {
-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]
[-setfattr {
-n name [-v value] | -x name} <path>]
[-setrep [-R] [-w] <rep> <path> ...]
[-stat [format] <path> ...]
[-tail [-f] <file>]
[-test -[defsz] <path>]
[-text [-ignoreCrc] <src> ...]
[-touchz <path> ...]
[-truncate [-w] <length> <path> ...]
[-usage [cmd ...]]
4.1.2 常见命令
# 1.查看目录结构
[root@hadoop1 ~]# hdfs dfs -ls /
# 2.上传文件到HDFS
[root@hadoop1 ~]# hdfs dfs -put aa.txt /
# 3.创建文件夹
[root@hadoop1 ~]# hdfs dfs -mkdir -p /bbb/cccc
[root@hadoop1 ~]# hdfs dfs -ls /
Found 2 items
-rw-r--r-- 1 root supergroup 58 2019-12-18 16:13 /aa.txt
drwxr-xr-x - root supergroup 0 2019-12-18 16:16 /bbb
[root@hadoop1 ~]# hdfs dfs -ls /bbb/cccc
# 4.查看文件内容
[root@hadoop1 ~]# hdfs dfs -cat /aa.txt
chenyn 1
xiaohei 1
wangwu 1
xiaohei 1
chenyn 1
zhangsan 1
[root@hadoop1 ~]# hdfs dfs -text /aa.txt
chenyn 1
xiaohei 1
wangwu 1
xiaohei 1
chenyn 1
zhangsan 1
# 5.删除文件
[root@hadoop1 ~]# hdfs dfs -rm /aa.txt
Deleted /aa.txt
# 6.删除空目录
[root@hadoop1 ~]# hdfs dfs -rm -r /bbb ----- 递归删除
Deleted /bbb
[root@hadoop1 ~]# hdfs dfs -mkdir -p /aa/bb/cc ----- 创建多级目录
[root@hadoop1 ~]# hdfs dfs -rm -r -f /aa ----- 强制删除
Deleted /aa
# 7.追加文件内容
[root@hadoop1 ~]# hdfs dfs -put aa.txt /
[root@hadoop1 ~]# hdfs dfs -cat /aa.txt
chenyn 1
xiaohei 1
wangwu 1
xiaohei 1
chenyn 1
zhangsan 1
[root@hadoop1 ~]# touch bb.txt
[root@hadoop1 ~]# echo "xiaohei 1" >> bb.txt
[root@hadoop1 ~]# cat bb.txt
xiaohei 1
[root@hadoop1 ~]# hdfs dfs -appendToFile bb.txt /aa.txt
[root@hadoop1 ~]# hdfs dfs -cat /aa.txt
chenyn 1
xiaohei 1
wangwu 1
xiaohei 1
chenyn 1
zhangsan 1
xiaohei 1
# 8.查看文件的校验核
[root@hadoop1 ~]# hdfs dfs -checksum /aa.txt
/aa.txt MD5-of-0MD5-of-512CRC32C 000002000000000000000000fb2fbd294298362dbaabfb7fc8724306
# 9.查看文件的权限
[root@hadoop1 ~]# hdfs dfs -ls -R /aa.txt
-rw-r--r-- 1 root supergroup 68 2019-12-18 16:35 /aa.txt
[root@hadoop1 ~]# hdfs dfs -chmod a+x /aa.txt
[root@hadoop1 ~]# hdfs dfs -ls -R /aa.txt
-rwxr-xr-x 1 root supergroup 68 2019-12-18 16:35 /aa.txt
# 10.从本地copy到hdfs中
[root@hadoop1 ~]# hdfs dfs -copyFromLocal bb.txt /bb.txt -----从本地复制文件到HDFS
[root@hadoop1 ~]# hdfs dfs -copyFromLocal bb.txt /bb.txt -----如果文件已经存在hdfs 复制失败
copyFromLocal: `/bb.txt': File exists
[root@hadoop1 ~]# hdfs dfs -copyFromLocal -f bb.txt /bb.txt -----如果文件已经存在hdfs 可以强制覆盖hdfs中文件
# 11.hdfs中复制文件
[root@hadoop1 ~]# hdfs dfs -mkdir /datas
[root@hadoop1 ~]# hdfs dfs -cp /aa.txt /datas
[root@hadoop1 ~]# hdfs dfs -ls /datas
Found 1 items
-rw-r--r-- 1 root supergroup 68 2019-12-18 16:54 /datas/aa.txt
# 12.从hdfs上下载文件到本地
[root@hadoop1 ~]# hdfs dfs -ls /
Found 3 items
-rwxr-xr-x 1 root supergroup 68 2019-12-18 16:35 /aa.txt
-rw-r--r-- 1 root supergroup 10 2019-12-18 16:50 /bb.txt
drwxr-xr-x - root supergroup 0 2019-12-18 16:54 /datas
[root@hadoop1 ~]# ls
aa.txt bb.txt hadoop-2.9.2.tar.gz jdk-8u171-linux-x64.rpm
[root@hadoop1 ~]# hdfs dfs -get /aa.txt /root/down.txt
[root@hadoop1 ~]# ls
aa.txt bb.txt down.txt hadoop-2.9.2.tar.gz jdk-8u171-linux-x64.rpm
# 13.查找某个路径下文件
[root@hadoop1 ~]# hdfs dfs -find / -name "aa.txt"
/aa.txt
/datas/aa.txt
# 14.将hdfs文件移动到hdfs另一个位置
[root@hadoop1 ~]# hdfs dfs -ls /
Found 3 items
-rwxr-xr-x 1 root supergroup 68 2019-12-18 16:35 /aa.txt
-rw-r--r-- 1 root supergroup 10 2019-12-18 16:50 /bb.txt
drwxr-xr-x - root supergroup 0 2019-12-18 16:54 /datas
[root@hadoop1 ~]# hdfs dfs -ls /datas
Found 1 items
-rw-r--r-- 1 root supergroup 68 2019-12-18 16:54 /datas/aa.txt
[root@hadoop1 ~]# hdfs dfs -mv /bb.txt /datas/bb.txt
[root@hadoop1 ~]# hdfs dfs -ls /
Found 2 items
-rwxr-xr-x 1 root supergroup 68 2019-12-18 16:35 /aa.txt
drwxr-xr-x - root supergroup 0 2019-12-18 17:03 /datas
[root@hadoop1 ~]# hdfs dfs -ls /datas
Found 2 items
-rw-r--r-- 1 root supergroup 68 2019-12-18 16:54 /datas/aa.txt
-rw-r--r-- 1 root supergroup 10 2019-12-18 16:50 /datas/bb.txt
4.2 Java操作HDFS
4.2.1 引入依赖
<properties>
<hadoop.version>2.9.2</hadoop.version>
</properties>
<dependencies>
<!--hadoop公共依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!--hadoop client 依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!--junit-->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
</dependencies>
4.2.2 获取hdfs客户端
public class TestHDFS {
private FileSystem fileSystem; //hdfs客户端对象
@Before
public void before() throws IOException {
//hadoop文件系统的权限设置为root
System.setProperty("HADOOP_USER_NAME","root");
//用来对core-site.xml hdfs-site.xml进行配置
Configuration conf = new Configuration();
//连接hdfs
conf.set("fs.defaultFS","hdfs://10.15.0.4:9000");
//设置上传文件的副本集
conf.set("dfs.replication","1");
fileSystem = FileSystem.get(conf);
}
@After
public void close() throws IOException {
fileSystem.close();
}
}
注意: FileSystem是java操作HDFS的客户端对象
4.2.3 上传文件到hdfs
@Test
public void testUpload() throws IOException {
FileInputStream is = new FileInputStream("/Users/chenyannan/IdeaProjects/ideacode/hadoop_hdfs/pom.xml");
Path path = new Path("/pom.xml");
FSDataOutputStream os = fileSystem.create(path);
//参数1:输入流 参数2:输出流 参数3:缓冲区大小 参数4:是否关闭流
IOUtils.copyBytes(is,os,1024,true);
}
4.2.4 hdfs下载文件
// 1.第一种方式
@Test
public void testDownload() throws IOException {
Path source = new Path("/pom.xml");
Path des = new Path("/Users/chenyannan");
fileSystem.copyToLocalFile(source,des);
}
// 2.第二种方式
@Test
public void testDownload1() throws IOException {
Path path = new Path("/pom.xml");
FSDataInputStream in = fileSystem.open(path);
FileOutputStream os = new FileOutputStream("/Users/chenyannan/aa.xml");
IOUtils.copyBytes(in,os,1024,true);
}
4.2.5 hdfs创建目录
@Test
public void testMkdirs() throws IOException {
boolean mkdirs = fileSystem.mkdirs(new P