【算法】分治法所能解决的问题的特征总结

本文探讨了分治法的设计思想,包括可缩性、子结构和可合性,并强调了递归在算法设计中的重要性。通过分析递归的思路、何时考虑递归、头递归与尾递归的区别,以及for循环内嵌递归的应用,举例说明如何解决实际问题,如计算排列、汉诺塔等。文章提供了更多练习,帮助读者深入理解递归和分治法。
摘要由CSDN通过智能技术生成

分治法的设计思想:

将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。**

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排。n=2时,只要作一次比较即可排好序。n=3时序问题,当n=1时,不需任何计算只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

分治法所能解决的问题一般具有以下几个特征:

1.可缩性。问题的规模缩小到一定的程度就可以容易地解决;

2.最有子结构性。问题可以分解为若干个规模较小的相同问题;

3.可合性。利用该问题分解出的子问题的解可以合并为该问题的解;

4.独立性。该问题所分解出的各个子问题是相互独立的,即子问 题之间不包含公共的子子问题。## 标题

分治思想与递归就像一对孪生兄弟,经常同时应用在算法设计中,并由此产生高效的算法!


设计递归的思路

最小子结构
子结构
最小子结构与子结构之间的关系

寻找这三个问题的答案时,可以先手算前几个情况的答案,然后找规律。
如果能回答上来这三个问题,题目便迎刃而解了


什么时候考虑递归

具有以下特征的问题可考虑递归求解:

当问题和子问题具有递推关系,比如杨辉三角、计算阶乘(后文讨论)。
具有递归性质的数据结构,比如链表、树、图。
反向性问题,比如取反。
总结下来,最根本的还是要抓住问题本身是否可以通过层层拆解到最小粒度来得解。
若有兴趣,请点击->递归的详细解释


头递归与尾递归

通过下面的例子来体会头递归与尾递归的区别

//#incldue<链表定义>                 偷懒:)
void print1(LinkList L){
   
    if(L==NULL) return;
    print1(L->next);  //先递归到链表最尾部 再逆序输出
    printf("%d ",L->data);
    //输出结果 10 9 8 7 6 5 4 3 2 1
}
void print1(LinkList L){
   
    if(L==NULL) return;
    
  • 8
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值