算法简介

时间复杂度

定义

  • 时间复杂度O:评估执行程序所需的时间。可以估算出程序对处理器的使用程度;
  • 空间复杂度:评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度
    设计算法时,一般是要先考虑系统环境,然后权衡时间复杂度和空间复杂度,选取一个平衡点。不过,时间复杂度要比空间复杂度更容易产生问题,因此算法研究的主要也是时间复杂度,不特别说明的情况下,复杂度就是指时间复杂度
时间复杂度:就是当n为无穷大的时候循环所需要步骤的极限(注意下面三个原则)
  1. 一个算法中的语句执行次数称为语句频度或时间频度。记为T(n),n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。
  2. 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n)),它称为算法的渐进时间复杂度,简称时间复杂度。
大O表示法:
  • 算法复杂度可以从最理想情况、平均情况和最坏情况三个角度来评估,由于平均情况大多和最坏情况持平,而且评估最坏情况也可以避免后顾之忧,因此一般情况下,我们设计算法时都要直接估算最坏情况的复杂度。
  • 大O表示法O(f(n)中的f(n)的值可以为1、n、logn、n²等,因此我们可以将O(1)、O(n)、O(logn)、O(n²)分别可以称为常数阶、线性阶、对数阶和平方阶
推导大O阶 (高数中的极限思想)
  • 推导大O阶,我们可以按照如下的规则来进行推导,得到的结果就是大O表示法:

    1. 用常数1来取代运行时间中所有加法常数。
    2. 修改后的运行次数函数中,只保留最高阶项
    3. 如果最高阶项存在且不是1,则去除与这个项相乘的常数。
  • 分类

    1. 常数阶 : 所需步数可精确到的都为O(1);
    2. 线性阶: 算法循环体中的代码执行了n次,因此时间复杂度为O(n);
for(int i=0;i<n;i++){
//时间复杂度为O(1)的算法
...
}
  1. 对数阶
int number=1;
while(number<n){
number=number*2;
//时间复杂度为O(1)的算法
...
}

随着number每次乘以2后,都会越来越接近n,当number不小于n时就会退出循环。假设循环的次数为X,则由2^x=n得出x=log₂n,因此得出这个算法的时间复杂度为O(logn)。

  1. 平方阶
for(int i=0;i<n;i++){   
      for(int j=0;j<n;i++){
         //复杂度为O(1)的算法
         ... 
      }
  }

内层循环的时间复杂度在讲到线性阶时就已经得知是O(n),现在经过外层循环n次,那么这段算法的时间复杂度则为O(n²)。

  • 其他常见复杂度
    除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度:
    f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。
    f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。
    f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。
    f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。
    f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。

这里写图片描述

从上表可以看出,O(n)、O(logn)、O(√n )、O(nlogn )随着n的增加,复杂度提升不大,因此这些复杂度属于效率高的算法,反观O(2ⁿ)和O(n!)当n增加到50时,复杂度就突破十位数了,这种效率极差的复杂度最好不要出现在程序中,因此在动手编程时要评估所写算法的最坏情况的复杂度

常用的时间复杂度按照耗费的时间从小到大依次是:后续自己计算 O 设计最快算法

//避免使用2ⁿ,n!
O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!)

插入排序(初等排序,稳定,前后相同的值不交换位置)

  • 定义
    插入排序过程中会将需要排序的数组,分为两个部分:已排序部分和未排序部分
    插入的排序规则:
    将开头元素视为以排序部分。接着执行如下的处理,直到没有未排序部分。
    1. 取出未排序部分的开头元素赋值给临时保存数据的变量v。
    2. 在已排列的部分将所有比v大的元素向后移动一个位置。
    3. 将取出的元素v插入空位。
 /**
     * 插入排序
     * 所需要的时间:根据最坏情况,有第一个都第n个步骤为:1+2+3+...+n = n²/2+n/2 , 极限为  n² 
     * 则插入排序的时间复杂度为O(n²)
     */
    private void insertionSort() {

        int a[] = {8, 3, 1, 5, 2, 1};

        System.out.println("修改前:");
        arrayUtils(a);

        int i, j, v;
        int n = a.length;
        for (i = 1; i < n; i++) {
            v = a[i];
            j = i - 1;
            while (j >= 0 && a[j] > v) {
                a[j + 1] = a[j];
                j--;
            }
            a[j + 1] = v;
        }
        System.out.println("修改后:");
        arrayUtils(a);

    }

public void arrayUtils(int[] array) {
            System.out.print("{");
            int len=array.length;
            for (int i = 0; i < len; i++) {
                System.out.print(array[i]);
                if (i < len - 1) {
                    System.out.print(", ");
                }
            }
            System.out.println("}");
    }
希尔排序(不稳定,相同的值可能交换前后顺序)
  • 面对大量杂乱无章的数据,使用插入排序运算速度很慢,为此改进为希尔排序
  • 原理:希尔排序改进了插入排序这一问题,它交换不相邻的元素对数组进行局部排序,并最终用插入排序将局部有序的数组进行排序。 (一般分组为 n/2 直到为1组数据)
    先分组取值后进行插入排序,然后在分组在插入,直到为1组的时候进行插入排序,由于首先在组内排为有序数列,在插入的时候步骤明显减少,时间复杂度降低
  • 时间复杂度
    1. 注意h 的选择上面,一般常用的h值为h = 3 * h + 1,也就是1、4、13、40、121、346、1093……,这些h值会根据数组的大小而改变。(有的选取n/2也是可行的,不如数组有10个元素,先分为10/2=5组,排序,在分为5/2=2组排序,最后分为2/2=1组使用插入排序即可)
    2. 希尔排序的复杂度要根据h的值来进行计算,不同的h值会导致不同的复杂度,一般情况下,当h = 3 * h + 1时,希尔排序的复杂度基本维持在O(n^1.25)。
 private void shellSort() {

        int a[] = {4, 8, 9, 1, 10, 6, 2, 5};

        System.out.println("修改前:");
        arrayUtils(a);

        int h = 1;
        int n = a.length;
        while (h < n / 3) //1
            h = 3 * h + 1;

        while (h >= 1) {
            //增量为h的插入排序
            for (int i = h; i < n; i++) {
                int v = a[i];
                int j = i - h;
                while (j >= 0 && a[j] > v) {
                    a[j + h] = a[j];
                    j -= h;
                }
                a[j + h] = v;
            }
            h = h / 3;
        }


        System.out.println("修改后:");
        arrayUtils(a);



    }

选择排序

  • 规则:就是重复执行以下的处理:
    1. 找出未排序部分最小值的位置min。
    2. 将min位置的元素与未排序部分的起始元素做对比,如果顺序错误则将它们进行就交换。
      (从第一个数字开始,第一个数跟其后数据中最小的数字做对比,如果比他大就交换位置,找出所以数字中最小的一个(在n-1个中找到最小值步数为n-1),然后再从第二个数字做相同的工作(在n-2个中找到最小值步数为n-2)),依次类推直到最后两个数字比较为 步数为 1 ,总步数为 (n-1)+(n-2)+(n-3)+……+1次比较,也就是n²/2+n/2次比较,因此时间复杂度为O(n²)
  • 注意:无论数据如何,他的步数都是O(n²),不受输入数据的影响.插入排序如果顺利只需要n步就完成了(顺序如,1,2,3,4,5,6….有序的话),而使用选择依然需要n²
 private void selection() {

        int a[] = {5, 4, 8, 7, 9, 3, 1};
        System.out.println("修改前:");
        arrayUtils(a);
        int i, j, min, v;
        int n = a.length;
        for (i = 0; i < n; i++) {
            //每次将未排序部分的首元素下标赋值给下标min
            min = i;
            //得到未排序部分的最小值的下标并赋值给min
            for (j = i+1; j < n; j++) {
                if (a[j] < a[min]) {
                    min = j;
                }
            }
            v = a[i];
            a[i] = a[min];
            a[min] = v;
        }


        System.out.println("修改后:");
        arrayUtils(a);

    }
冒泡排序
  • 原理:冒泡排序应该是开发者最容易理解的排序算法,它的基本思想就是每次比较两个相邻的元素,如果它们的顺序错误就把它们交换过来。需要进行排序的元素则向水中的气泡一样慢慢的移向水面。
    从第一个位置开始循环,内层有数组最后一个数字小于倒数第二个,则交换位置,否则不交换,在倒数第二个跟倒数第三个比较,就像气泡一样上升直到第一个为数组中的最小值,总共顺序为n-1
    在从第二个位置继续比较,总共顺序为 n-2
    总步数为 (n-1)+(n-2)+(n-3)+……+1次比较,也就是n²/2+n/2次比较,根据推导大O阶的规则我们得出,冒泡排序的时间复杂度为O(n²)。
  private void bubble() {
        int a[] = {5, 4, 8, 7, 9, 3, 1};
        System.out.println("修改前:");

        int i, j, v;
        int n = a.length;
        for (i = 1; i <= n - 1; i++) {
            for (j = n - 1; j >= i ; j--) {
                if (a[j] < a[j - 1]) {
                    v = a[j];
                    a[j] = a[j - 1];
                    a[j - 1] = v;
                }
            }
        }

        System.out.println("修改后:");
        arrayUtils(a);

    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值