参考:
代码随想录[长度最小的子数组]
零 、描述
给定一个含有 n 个正整数的数组和一个正数组 target。
例子:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
输入:target = 4, nums = [1,4,4]
输出:1
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
一、解法:暴力解法
两个for循环,然后不断的寻找符合条件的子序列,
时间复杂度:
O
(
n
2
)
O(n^2)
O(n2)
代码:
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX; // 最终的结果
int sum = 0; // 子序列的数值之和
int subLength = 0; // 子序列的长度
for (int i = 0; i < nums.size(); i++) {
// 设置子序列起点为i
sum = 0;
for (int j = i; j < nums.size(); j++) {
// 设置子序列终止位置为j
sum += nums[j];
if (sum >= s) {
// 一旦发现子序列和超过了s,更新result
subLength = j - i + 1;
// 取子序列的长度
result = result < subLength ? result : subLength;
break;
// 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
二、解法: 滑动窗口
滑动窗口: 本质还是双指针
依旧还是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果;在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。
如果用一个for循环,那么应该表示 滑动窗口的起始位置,还是终止位置?
- 只用一个for循环来表示 滑动窗口的起始位置,那么如何遍历剩下的终止位置?
- 所以只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置
终止位置:窗口就是 满足其和 ≥ target 的长度最小的 连续 子数组
关键:
- 先从头开始找到一个连续子数组其和大于target,作用在于固定右指针
- 此时,开始动左指针,左指针移动,当连续子数组和小于target时候,固定左指针
- 再移动右指针,使得连续子数组大于target,固定右指针
- 循环以上步骤
复杂度:
- 时间复杂度:O(n^2)暴力解法降为O(n)
不要以为for里放一个while就以为是O(n^2)啊
主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)。 - 空间复杂度:O(1)
代码:
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int result = INT32_MAX; //给一个很大的值
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
// j 指的是终止位置
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
// 1.先找到前j项和大于等于target的j
while ( sum >= target ) {
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength; //result表示当前的最短长度
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
三、总结
可以想到双指针,但是总陷入暴力解法的圈子里。
关键在于想到首先固定的,不是起点(或者叫做左指针),而是终点(右指针)。
先把右脚试着试着迈上台阶,固定好右脚后,移动左脚,
左脚移动后,不满足条件时,再移动右脚。