题目链接:
454.四数相加II
383. 赎金信
15. 三数之和
16. 四数之和
454.四数相加II
为什么想到哈希?
根据“有效字母异位词”题目,给出一个数组A,去判断另一个数组B里有没有出现数组A的所有元素。
当我们需要查询一个元素是否出现过,或者一个元素是否在集合里的时候,就要第一时间想到哈希法。
所以,本题中A[i] + B[j] + C[k] + D[l] = 0:
- 可以考虑遍历B,C,D中B[j] + C[k] + D[l]的和中有没有A数组元素的相反数字。此时算法复杂度为O(n^3)。
- 还可以考虑遍历C,D中C[k] + D[l]的和中有没有A+B数组元素的相反数字。此时算法复杂度为O(n^2)。
选择第二种方法。
代码:
class Solution {
public:
int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
unordered_map<int, int> umap; //key:a+b的数值,value:a+b数值出现的次数
// 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中
for (int a : A) {
for (int b : B) {
umap[a + b]++;
}
}
int count = 0; // 统计a+b+c+d = 0 出现的次数
// 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就把map中key对应的value也就是出现次数统计出来。
for (int c : C) {
for (int d : D) {
if (umap.find(0 - (c + d)) != umap.end()) {
count += umap[0 - (c + d)];
}
}
}
return count;
}
};
383. 赎金信
思路:有点类似于“有效字母异位词”题目,区别在于字符串a可能不包含字符串b中所有的字符串
canConstruct("aa", "ab") -> false
canConstruct("aa", "abb") -> false
canConstruct("aa", "aab") -> true
代码:
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
if (ransomNote.size() > magazine.size()) {
return false;
}
vector<int> cnt(26);
for (auto & c : magazine) {
cnt[c - 'a']++;
}
for (auto & c : ransomNote) {
cnt[c - 'a']--;
if (cnt[c - 'a'] < 0) {
return false;
}
}
return true;
}
};
//需要改进的代码:
// class Solution {
// public:
// bool canConstruct(string ransomNote, string magazine) {
// // 字符串
// int hash1[26]={0};
// int hash2[26]={0};
// for(int i=0;i<ransomNote.size();i++){
// hash1[ransomNote[i]-'a']++;
// }
// for(int i=0;i<magazine.size();i++){
// hash2[magazine[i]-'a']++;
// }
// for(int i=0;i<26;i++){
// cout<<hash1[i]<<" ";
// }
// cout<<endl;
// for(int i=0;i<26;i++){
// cout<<hash2[i]<<" ";
// }
// for(int i=0;i<26;i++){
// if(hash1[i]!=0 && (hash1[i] > hash2[i])){
// return false;
// }
// }
// return true;
// }
// };
15. 三数之和
题目:
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
关键示例:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
输入:nums = [-1,-1,-1,2] 仅有一组解为[-1,-1,2]
输出:[ [-1,-1,2] ]
输入:nums = [0,1,1] 无解
输出:[]
输入:nums = [0,0,0] 唯一可能的三元组和为 0
输出:[[0,0,0]]
思路:
使用哈希法的话,两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过。但问题在于去重问题【即,[-1,-1,-1,2]这种,只有一组解为[-1, -1, 2] 】,会比较复杂
哈希表解法【代码随想录】
三指针解法【代码随想录中的双指针解法,链接】
时间复杂度:O(n^2)
主体流程:
完整代码:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) {
return result;
}
// 错误去重a方法,将会漏掉-1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重a方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
//其他注意点:
// int left=i+1,right=nums.size()-1;
// while(L<R){
// if(nums[i]+nums[L]+nums[R]==0) {
// // 错误点1:res.push_back([i,L,R]); 不是输出下标
// res.push_back(vector<int>{nums[i], nums[L], nums[R]});
// // 错误点2:找到一组答案后,仍然要L++,R--,继续找下一组
// // 错误点3:去L,R去重
// }
// else if(nums[i]+nums[L]+nums[R]< 0) L++;
// else R--;
// }
第18题. 四数之和
对于15.三数之和 (opens new window)双指针法就是将原本暴力O(n
3
^3
3)的解法, 降为O(n
2
^2
2)的解法,
四数之和的双指针解法就是将原本暴力O(n
4
^4
4)的解法,降为O(n
3
^3
3)的解法。
完整代码
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 剪枝处理
if (nums[k] > target && nums[k] >= 0) {
break; // 这里使用break,统一通过最后的return返回
}
// 对nums[k]去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 2级剪枝处理
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
// 对nums[i]去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};