Python数据分析三大库——Numpy入门(1)-ndarray介绍、切片、转置

1、ndarray

1.1 ndarray简单介绍

NumPy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样。

引入numpy时可以在代码中使用 from numpy import * ,但不建议这么做。 numpy 的命名空间很大,包含许多函数,其中一些的名字与Python的内置函数重名(比如min和max)。

In [12]: import numpy as np  #引入numpy类

# Generate some random data
In [13]: data = np.random.randn(2, 3)  #randn是一种产生标准正态分布的随机数或矩阵的函数,创建一个随机2×3的矩阵 

In [14]: data
Out[14]:
array([[-0.2047, 0.4789, -0.5194],
	   [-0.5557, 1.9658, 1.3934]])

ndarray可以进行数学运算:

In [15]: data * 10
Out[15]:
array([[ -2.0471, 4.7894, -5.1944],
	   [ -5.5573, 19.6578, 13.9341]])

In [16]: data + data
Out[16]:
array([[-0.4094, 0.9579, -1.0389],
	   [-1.1115, 3.9316, 2.7868]])

ndarray是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。每个数
组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据类型的对
象):

In [17]: data.shape
Out[17]: (2, 3)
    
In [18]: data.dtype
Out[18]: dtype('float64')
1.2 创建ndarray——array

创建数组最简单的办法就是使用array函数。它接受一切序列型的对象(包括其他数组),然后产
生一个新的含有传入数据的NumPy数组。以一个列表的转换为例:

In [19]: data1 = [6, 7.5, 8, 0, 1]
    
In [20]: arr1 = np.array(data1)
    
In [21]: arr1
Out[21]: array([ 6. , 7.5, 8. , 0. , 1. ])

嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组:

In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [23]: arr2 = np.array(data2)

In [24]: arr2
Out[24]:
array([[1, 2, 3, 4],
 	   [5, 6, 7, 8]])

因为data2是列表的列表,NumPy数组arr2的两个维度的shape是从data2引入的。可以用属性ndim和shape验证:

In [25]: arr2.ndim
Out[25]: 2

In [26]: arr2.shape
Out[26]: (2, 4)

除非特别说明,否则np.array会尝试为新建的这个数组推断出一个较为合适的数据类型。数据类型保存在一个特殊的dtype对象中。比如说,在上面的两个例子中,我们有:

In [27]: arr1.dtype
Out[27]: dtype('float64')

In [28]: arr2.dtype
Out[28]: dtype('int64')

除np.array之外,还有一些函数也可以新建数组。比如,zeros和ones分别可以创建指定长度或形
状的全0或全1数组。empty可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只
需传入一个表示形状的元组即可:

In [29]: np.zeros(10)
Out[29]: array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
    
In [30]: np.zeros((3, 6))
Out[30]:
array([[ 0., 0., 0., 0., 0., 0.],
	   [ 0., 0., 0., 0., 0., 0.],
	   [ 0., 0., 0., 0., 0., 0.]])

In [31]: np.empty((2, 3, 2))
Out[31]:
array([[[ 0., 0.],
		[ 0., 0.],
		[ 0., 0.]],
		[[ 0., 0.],
		[ 0., 0.],
		[ 0., 0.]]])

arange是Python内置函数range的数组版:

In [32]: np.arange(15)
Out[32]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

下表列出了一些数组创建函数。由于NumPy关注的是数值计算,因此,如果没有特别指定,数据
类型基本都是float64(浮点数)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Fdh7nOeI-1647774362142)(C:\Users\LENOVO\AppData\Roaming\Typora\typora-user-images\image-20220320160104578.png)]

1.3 dtype

dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信
息:

In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)

In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)

In [35]: arr1.dtype
Out[35]: dtype('float64')
    
In [36]: arr2.dtype
Out[36]: dtype('int32')

数值型dtype的命名方式相同:一个类型名(如float或int),后面跟一个用于表示各元素位长
的数字。标准的双精度浮点值(即Python中的float对象)需要占用8字节(即64位)。因此,该类
型在NumPy中就记作float64。下表列出了NumPy所支持的全部数据类型。
在这里插入图片描述

1.4 astype

可以通过ndarray的astype方法明确地将一个数组从一个dtype转换成另一个dtype:

In [37]: arr = np.array([1, 2, 3, 4, 5])
    
In [38]: arr.dtype
Out[38]: dtype('int64')
    
In [39]: float_arr = arr.astype(np.float64)
    
In [40]: float_arr.dtype
Out[40]: dtype('float64')

在本例中,整数被转换成了浮点数。如果将浮点数转换成整数,则小数部分将会被截取删除:

In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
    
In [42]: arr
Out[42]: array([ 3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
    
In [43]: arr.astype(np.int32)
Out[43]: array([ 3, -1, -2, 0, 12, 10], dtype=int32)

如果某字符串数组表示的全是数字,也可以用astype将其转换为数值形式:

In [44]: numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_)
    
In [45]: numeric_strings.astype(float)
Out[45]: array([ 1.25, -9.6 , 42. ])

注意:使用numpy.string_ 类型时,一定要小心,因为NumPy的字符串数据是大小固定的,发生截取时,不会发出警告。pandas提供了更多非数值数据的便利的处理方法。

如果转换过程因为某种原因而失败了(比如某个不能被转换为float64的字符串),就会引发一个
ValueError。NumPy很聪明,它会将Python类型映射到等价的dtype上。数组的dtype还有另一个属性:

In [46]: int_array = np.arange(10)
    
In [47]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.float64)
    
In [48]: int_array.astype(calibers.dtype)
Out[48]: array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
1.5 数组运算

数组很重要,因为它使你不用编写循环即可对数据执行批量运算。NumPy用户称其为矢量化
(vectorization)。大小相等的数组之间的任何算术运算都会将运算应用到元素级。

注意,这里和MATLAB的矩阵运算不太一样,MATLAB要想将运算应用到元素级需要使用点乘

In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])
    
In [52]: arr
Out[52]:
array([[ 1., 2., 3.],
	   [ 4., 5., 6.]])

In [53]: arr * arr
Out[53]:
array([[ 1., 4., 9.],
       [ 16., 25., 36.]])

In [54]: arr - arr
Out[54]:
array([[ 0., 0., 0.],
       [ 0., 0., 0.]])

数组与标量的算术运算会将标量值传播到各个元素:

In [55]: 1 / arr
Out[55]:
array([[ 1. , 0.5 , 0.3333],
	   [ 0.25 , 0.2 , 0.1667]])

In [56]: arr ** 0.5
Out[56]:
array([[ 1. , 1.4142, 1.7321],
	   [ 2. , 2.2361, 2.4495]])

大小相同的数组之间的比较会生成布尔值数组:

In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])
    
In [58]: arr2
Out[58]:
array([[ 0., 4., 1.],
	   [ 7., 2., 12.]])

In [59]: arr2 > arr
Out[59]:
array([[False, True, False],
       [ True, False, True]], dtype=bool)

不同大小的数组之间的运算叫做广播(broadcasting)

1.6 索引和切片

NumPy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数
组很简单。从表面上看,它们跟Python列表的功能差不多:

In [60]: arr = np.arange(10)
    
In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    
In [62]: arr[5]
Out[62]: 5
    
In [63]: arr[5:8]
Out[63]: array([5, 6, 7])
    
In [64]: arr[5:8] = 12
    
In [65]: arr
Out[65]: array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9])

如上所示,当你将一个标量值赋值给一个切片时(如arr[5:8]=12),该值会自动传播(也就说后面
将会讲到的“广播”)到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味
着数据不会被复制,视图上的任何修改都会直接反映到源数组上
作为例子,先创建一个arr的切片:

In [66]: arr_slice = arr[5:8]
    
In [67]: arr_slice
Out[67]: array([12, 12, 12])

现在,当我修稿arr_slice中的值,变动也会体现在原始数组arr中:

In [68]: arr_slice[1] = 12345
    
In [69]: arr
Out[69]: array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8,
9])

切片[ : ]会给数组中的所有值赋值:

In [70]: arr_slice[:] = 64
    
In [71]: arr
Out[71]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])

这是由于NumPy的设计目的是处理大数据,假如NumPy坚持要将数据复制来复制去的话会产生严重的性能和内存问题。

如果你想要得到的是ndarray切片的一份副本而非视图,就需要明确地进行复制操作,例如 arr[5:8].copy() 。

对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维
数组

In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    
In [73]: arr2d[2]
Out[73]: array([7, 8, 9])

因此,可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的
索引列表来选取单个元素。也就是说,下面两种方式是等价的:

In [74]: arr2d[0][2]
Out[74]: 3
    
In [75]: arr2d[0, 2]
Out[75]: 3

下图说明了二维数组的索引方式。轴0作为行,轴1作为列。

在这里插入图片描述

在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一
级维度上的所有数据)。因此,在2×2×3数组arr3d中:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
    
In [77]: arr3d
Out[77]:
array([[[ 1, 2, 3],
	    [ 4, 5, 6]],
       [[ 7, 8, 9],
        [10, 11, 12]]])

arr3d[0]是一个2×3数组:

In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
       [4, 5, 6]])

标量值和数组都可以被赋值给arr3d[0]:

In [79]: old_values = arr3d[0].copy()
    
In [80]: arr3d[0] = 42
    
In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7, 8, 9],
		[10, 11, 12]]])

In [82]: arr3d[0] = old_values
    
In [83]: arr3d
Out[83]:
array([[[ 1, 2, 3],
 		[ 4, 5, 6]],
	   [[ 7, 8, 9],
		[10, 11, 12]]])

相似的,arr3d[1,0]可以访问索引以(1,0)开头的那些值(以一维数组的形式返回):

In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])

虽然是用两步进行索引的,表达式是相同的:

In [85]: x = arr3d[1]
    
In [86]: x
Out[86]:
array([[ 7, 8, 9],
	   [10, 11, 12]])

In [87]: x[0]
Out[87]: array([7, 8, 9])

注意,在上面所有这些选取数组子集的例子中,返回的数组都是视图。

切片索引

ndarray的切片语法跟Python列表这样的一维对象差不多:

In [88]: arr
Out[88]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
    
In [89]: arr[1:6]
Out[89]: array([ 1, 2, 3, 4, 64])

对于之前的二维数组arr2d,其切片方式稍显不同:

In [90]: arr2d
Out[90]:
array([[1, 2, 3],
	   [4, 5, 6],
	   [7, 8, 9]])

In [91]: arr2d[:2]
Out[91]:
array([[1, 2, 3],
	   [4, 5, 6]])

可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。
表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。
你可以一次传入多个切片,就像传入多个索引那样:

In [92]: arr2d[:2, 1:]
Out[92]:
array([[2, 3],
	   [5, 6]])

像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度
的切片。
例如,我可以选取第二行的前两列:

In [93]: arr2d[1, :2]
Out[93]: array([4, 5])

相似的,还可以选择第三列的前两行:

In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])

下图对此进行了说明。注意,“只有冒号”表示选取整个轴,因此你可以像下面这样只对高维轴进
行切片:

In [95]: arr2d[:, :1]
Out[95]:
array([[1],
       [4],
	   [7]])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wdMP9AWV-1647774362147)(C:\Users\LENOVO\AppData\Roaming\Typora\typora-user-images\image-20220320180028838.png)]

自然,对切片表达式的赋值操作也会被扩散到整个选区:

In [96]: arr2d[:2, 1:] = 0
    
In [97]: arr2d
Out[97]:
array([[1, 0, 0],
	   [4, 0, 0],
	   [7, 8, 9]])
布尔索引

来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:

In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
    
In [99]: data = np.random.randn(7, 4)
    
In [100]: names
Out[100]:
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],dtype='<U4')

In [101]: data
Out[101]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
	   [ 1.0072, -1.2962, 0.275 , 0.2289],
 	   [ 1.3529, 0.8864, -2.0016, -0.3718],
	   [ 1.669 , -0.4386, -0.5397, 0.477 ],
	   [ 3.2489, -1.0212, -0.5771, 0.1241],
	   [ 0.3026, 0.5238, 0.0009, 1.3438],
	   [-0.7135, -0.8312, -2.3702, -1.8608]])

假设每个名字都对应data数组中的一行,而我们想要选出对应于名字"Bob"的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串"Bob"的比较运算将会产生一个布尔型数组

In [102]: names == 'Bob'
Out[102]: array([ True, False, False, True, False, False, False],dtype=bool)

这个布尔型数组可用于数组索引:

In [103]: data[names == 'Bob']  #相当于data[0]和data[3]
Out[103]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
	   [ 1.669 , -0.4386, -0.5397, 0.477 ]])

布尔型数组的长度必须跟被索引的轴长度一致。此外,还可以将布尔型数组跟切片、整数混合使用。

注意:如果布尔型数组的长度不对,布尔型选择就会出错,因此一定要小心。

下面的例子,我选取了 names == ‘Bob’ 的行,并索引了列:

In [104]: data[names == 'Bob', 2:]
Out[104]:
array([[ 0.769 , 1.2464],
	   [-0.5397, 0.477 ]])

In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464, 0.477 ])

要选择除"Bob"以外的其他值,既可以使用不等于符号(!=),也可以通过~对条件进行否定:

In [106]: names != 'Bob'
Out[106]: array([False, True, True, False, True, True, True], dtype=bool)

In [107]: data[~(names == 'Bob')]
Out[107]:
array([[ 1.0072, -1.2962, 0.275 , 0.2289],
	   [ 1.3529, 0.8864, -2.0016, -0.3718],
	   [ 3.2489, -1.0212, -0.5771, 0.1241],
	   [ 0.3026, 0.5238, 0.0009, 1.3438],
	   [-0.7135, -0.8312, -2.3702, -1.8608]])

**~**操作符用来反转条件很好用:

In [108]: cond = names == 'Bob'
In [109]: data[~cond]
Out[109]:
array([[ 1.0072, -1.2962, 0.275 , 0.2289],
	   [ 1.3529, 0.8864, -2.0016, -0.3718],
	   [ 3.2489, -1.0212, -0.5771, 0.1241],
       [ 0.3026, 0.5238, 0.0009, 1.3438],
 	   [-0.7135, -0.8312, -2.3702, -1.8608]])

通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。

Python关键字and和or在布尔型数组中无效。要使用&与|。

通过布尔型数组设置值是一种经常用到的手段。为了将data中的所有负值都设置为0,我们只需:

In [113]: data[data < 0] = 0
    
In [114]: data
Out[114]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
	   [ 1.0072, 0. , 0.275 , 0.2289],
       [ 1.3529, 0.8864, 0. , 0. ],
	   [ 1.669 , 0. , 0. , 0.477 ],
	   [ 3.2489, 0. , 0. , 0.1241],
	   [ 0.3026, 0.5238, 0.0009, 1.3438],
	   [ 0. , 0. , 0. , 0. ]])

通过一维布尔数组设置整行或列的值也很简单:

In [115]: data[names != 'Joe'] = 7
    
In [116]: data
Out[116]:
array([[ 7. , 7. , 7. , 7. ],
	   [ 1.0072, 0. , 0.275 , 0.2289],
	   [ 7. , 7. , 7. , 7. ],
	   [ 7. , 7. , 7. , 7. ],
	   [ 7. , 7. , 7. , 7. ],
	   [ 0.3026, 0.5238, 0.0009, 1.3438],
	   [ 0. , 0. , 0. , 0. ]])

这类二维数据的操作也可以用pandas方便的来做。

花式索引

花式索引(Fancy indexing)是一个NumPy术语,它指的是利用整数数组进行索引。假设我们有一
个8×4数组:

In [117]: arr = np.empty((8, 4))
    
In [118]: for i in range(8):
		  	arr[i] = i
    
In [119]: arr
Out[119]:
array([[ 0., 0., 0., 0.],
	   [ 1., 1., 1., 1.],
	   [ 2., 2., 2., 2.],
       [ 3., 3., 3., 3.],
	   [ 4., 4., 4., 4.],
	   [ 5., 5., 5., 5.],
	   [ 6., 6., 6., 6.],
	   [ 7., 7., 7., 7.]])

为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或ndarray即可:

In [120]: arr[[4, 3, 0, 6]]
Out[120]:
array([[ 4., 4., 4., 4.],
	   [ 3., 3., 3., 3.],
	   [ 0., 0., 0., 0.],
	   [ 6., 6., 6., 6.]])

使用负数索引将会从末尾开始选取行:

In [121]: arr[[-3, -5, -7]]
Out[121]:
array([[ 5., 5., 5., 5.],
	   [ 3., 3., 3., 3.],
	   [ 1., 1., 1., 1.]])

一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元组:

In [122]: arr = np.arange(32).reshape((8, 4))
    
In [123]: arr
Out[123]:
array([[ 0, 1, 2, 3],
	   [ 4, 5, 6, 7],
	   [ 8, 9, 10, 11],
	   [12, 13, 14, 15],
	   [16, 17, 18, 19],
	   [20, 21, 22, 23],
	   [24, 25, 26, 27],
	   [28, 29, 30, 31]])

In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])

最终选出的是元素(1,0)、(5,3)、(7,1)和(2,2)。无论数组是多少维的,花式索引总是一维的。
这个花式索引的行为可能会跟某些用户的预期不一样(包括我在内),选取矩阵的行列子集应该是
矩形区域的形式才对。下面是得到该结果的一个办法:

In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[125]:
array([[ 4, 7, 5, 6],
	   [20, 23, 21, 22],
	   [28, 31, 29, 30],
	   [ 8, 11, 9, 10]])

记住,花式索引跟切片不一样,它总是将数据复制到新数组中。

1.7 数组转置和轴对换

转置是重塑的一种特殊形式,它返回的是源数据的视图(不会进行任何复制操作)。数组不仅有transpose方法,还有一个特殊的T属性:

In [126]: arr = np.arange(15).reshape((3, 5))
    
In [127]: arr
Out[127]:
array([[ 0, 1, 2, 3, 4],
	   [ 5, 6, 7, 8, 9],
	   [10, 11, 12, 13, 14]])

In [128]: arr.T
Out[128]:
array([[ 0, 5, 10],
	   [ 1, 6, 11],
	   [ 2, 7, 12],
	   [ 3, 8, 13],
	   [ 4, 9, 14]])

在进行矩阵计算时,经常需要用到该操作,比如利用np.dot计算矩阵内积:

In [129]: arr = np.random.randn(6, 3)
    
In [130]: arr
Out[130]:
array([[-0.8608, 0.5601, -1.2659],
	   [ 0.1198, -1.0635, 0.3329],
 	   [-2.3594, -0.1995, -1.542 ],
	   [-0.9707, -1.307 , 0.2863],
	   [ 0.378 , -0.7539, 0.3313],
	   [ 1.3497, 0.0699, 0.2467]])

In [131]: np.dot(arr.T, arr)  # 3×6和6×3的矩阵相乘 
Out[131]:
array([[ 9.2291, 0.9394, 4.948 ],
	   [ 0.9394, 3.7662, -1.3622],
	   [ 4.948 , -1.3622, 4.3437]])

对于高维数组,transpose需要得到一个由轴编号组成的元组才能对这些轴进行转置(比较费脑子):

In [132]: arr = np.arange(16).reshape((2, 2, 4))
    
In [133]: arr
Out[133]:
array([[[ 0, 1, 2, 3],
		[ 4, 5, 6, 7]],
	   [[ 8, 9, 10, 11],
		[12, 13, 14, 15]]])

In [134]: arr.transpose((1, 0, 2))
Out[134]:
array([[[ 0, 1, 2, 3],
		[ 8, 9, 10, 11]],
	   [[ 4, 5, 6, 7],
		[12, 13, 14, 15]]])

这里,第一个轴被换成了第二个,第二个轴被换成了第一个,最后一个轴不变。

简单的转置可以使用.T,它其实就是进行轴对换而已。ndarray还有一个swapaxes方法,它需要接
受一对轴编号:

In [135]: arr
Out[135]:
array([[[ 0, 1, 2, 3],
	    [ 4, 5, 6, 7]],
	   [[ 8, 9, 10, 11],
		[12, 13, 14, 15]]])

In [136]: arr.swapaxes(1, 2)
Out[136]:
array([[[ 0, 4],
		[ 1, 5],
		[ 2, 6],
		[ 3, 7]],
	   [[ 8, 12],
		[ 9, 13],
		[10, 14],
		[11, 15]]])

swapaxes也是返回源数据的视图(不会进行任何复制操作)。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ndarrayPython中的一种多维数组,可以用来存储和操作大量的数值数据。它具有许多有用的属性和方法,可以让用户更容易地处理数据。`numpy.ndarray` 是 NumPy 库中的一个类,用于表示 N 维数组(即多维数组)。它是 NumPy 的核心数据结构之一,提供了许多高效的操作,例如数组索引、切片、算术运算、数学函数等等。 在使用 `numpy.ndarray` 时,通常需要先导入 NumPy 库,然后通过 `numpy.array()` 函数将 Python 列表或元组转换成 N 维数组,例如: ```python import numpy as np # 从列表创建一个一维数组 a = np.array([1, 2, 3]) print(a) # 输出:[1 2 3] # 从元组创建一个二维数组 b = np.array([(1, 2, 3), (4, 5, 6)]) print(b) # 输出: # [[1 2 3] # [4 5 6]] ``` 可以通过 `ndarray.shape` 属性获取数组的维度信息,通过 `ndarray.dtype` 属性获取数组元素的数据类型,例如: ```python # 获取数组的形状 print(a.shape) # 输出:(3,) print(b.shape) # 输出:(2, 3) # 获取数组元素的数据类型 print(a.dtype) # 输出:int64 print(b.dtype) # 输出:int64 ``` 还可以使用各种方法对数组进行操作,例如: ```python # 数组加法 c = a + b print(c) # 输出: # [[2 4 6] # [5 7 9]] # 数组乘法 d = a * b print(d) # 输出: # [[ 1 4 9] # [ 4 10 18]] # 数组转置 e = b.T print(e) # 输出: # [[1 4] # [2 5] # [3 6]] ``` 这些只是 `numpy.ndarray` 类提供的一些基本功能,NumPy 库还有更多高级的特性和函数可以探索。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值