2021医学影像分割论文:MSGSE-Net:用于皮层下脑结构分割的多尺度引导压缩和提取网络

今天与大家分享一篇关于医学影像分割的论文。

论文标题

  • **2021年影响因子/JCR分区:**5.719/Q1
  • 论文链接:https://www.sciencedirect.com/science/article/pii/S0925231221010523
  • 代码地址:https://github.com/neulxlx/MSGSE-Net

提出的网络训练流程

本文提出MSGSE模块,创新点:多尺度上下文的融合、多尺度空间注意力机制、自适应再校准,以UNet为baseline,提出一种新的熵加权值骰子丢失方法(EDL)。

 图二  所提出的网络(编码块、解码块、多尺度特征增强块、空间注意力监督块、解码器特征校准模块)
1. MSGSE模块
图三  MSGSE模块的体系结构

MSGSE模块的具体计算过程

2.熵权骰子损失函数

​ 由于皮脑下层边界分割效果较差,边界的模糊体素不容易区分,在训练过程中,易被分割的体素占比大多数,并且控制着梯度;而模糊提速的判断正误会影响分割的正确率。因此,提出一种新的熵加权骰子损失算法关注模糊的体素。强制网络学习模糊体素的特征。下图是UNet网络的分割效果,其中图(d)表示分割错误的边界体素。

​ 解决数据不平衡的常用策略是为每个体素引入加权因子。因此,本文将体素级别权重定义为:

其中,pci是被网络预测分类的概率。体素水平权重度量体素预测的不确定性。使用建议的自动体素加权方法,我们建议的熵加权骰子损失定义为:

其中,在这里插入图片描述为网络预测与图像真实值的通道数,为0.00001,主要是为了稳定分式的值。

3.多尺度空间注意监督

空间注意监督可以使得网络在训练时更加聚集于目标区域。训练的过程如下,Ai表示MSGSE模块在第i级生成的注意力图,将带有n个卷积核的1×1卷积作用到Ai,最后再添加一个softmax层。其中,n表示分类的数目,使用双线性插值将输出上采样到输入图像大小,以获得空间注意mask Mi。空间监督注意损失定义为:


其中“交叉熵”是注意mask Mi 和GT标签之间的多类交叉熵;表示解码器规模的数量,表示本文提出的熵加权骰子损失。这种监督促使注意力遮罩尽可能靠近背景标记。

4.损失函数

本文提出的损失函数包含两个部分,分别是分割损失与上文提到的空间注意监督损失。分割损失包括预测图片与GT标签之间的多类交叉熵、本文提出的熵加权骰子损失。分割损失公式如下:

其中,P表示预测图。因此,该模型的损失函数的公式为:

其中,λ是平衡分割损失与空间注意监督损失之间的超参数,本文实验中设置为1。

5.实验结果

本文实验参考的评价指标为Dice与MHD,下面为在IBSR数据集上获得的脑结构分割结果。

表二 IBSR数据集上的几种最先进的语义分割方法的比较
表三 MALC数据集上的消融研究

在这里插入图片描述

​ 图5 U-Net和所提出的模型在IBSR数据集上的结构级骰子性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DI99

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值