今天与大家分享一篇关于医学影像分割的论文。
- **2021年影响因子/JCR分区:**5.719/Q1
- 论文链接:https://www.sciencedirect.com/science/article/pii/S0925231221010523
- 代码地址:https://github.com/neulxlx/MSGSE-Net
本文提出MSGSE模块,创新点:多尺度上下文的融合、多尺度空间注意力机制、自适应再校准,以UNet为baseline,提出一种新的熵加权值骰子丢失方法(EDL)。
1. MSGSE模块
2.熵权骰子损失函数
由于皮脑下层边界分割效果较差,边界的模糊体素不容易区分,在训练过程中,易被分割的体素占比大多数,并且控制着梯度;而模糊提速的判断正误会影响分割的正确率。因此,提出一种新的熵加权骰子损失算法关注模糊的体素。强制网络学习模糊体素的特征。下图是UNet网络的分割效果,其中图(d)表示分割错误的边界体素。
解决数据不平衡的常用策略是为每个体素引入加权因子。因此,本文将体素级别权重定义为:
其中,pci是被网络预测分类的概率。体素水平权重度量体素预测的不确定性。使用建议的自动体素加权方法,我们建议的熵加权骰子损失定义为:
其中,为网络预测与图像真实值的通道数,
为0.00001,主要是为了稳定分式的值。
3.多尺度空间注意监督
空间注意监督可以使得网络在训练时更加聚集于目标区域。训练的过程如下,Ai表示MSGSE模块在第i级生成的注意力图,将带有n个卷积核的1×1卷积作用到Ai,最后再添加一个softmax层。其中,n表示分类的数目,使用双线性插值将输出上采样到输入图像大小,以获得空间注意mask Mi。空间监督注意损失定义为:
其中“交叉熵”是注意mask Mi 和GT标签之间的多类交叉熵;表示解码器规模的数量,
表示本文提出的熵加权骰子损失。这种监督促使注意力遮罩尽可能靠近背景标记。
4.损失函数
本文提出的损失函数包含两个部分,分别是分割损失与上文提到的空间注意监督损失。分割损失包括预测图片与GT标签之间的多类交叉熵、本文提出的熵加权骰子损失。分割损失公式如下:
其中,P表示预测图。因此,该模型的损失函数的公式为:
其中,λ是平衡分割损失与空间注意监督损失之间的超参数,本文实验中设置为1。
5.实验结果
本文实验参考的评价指标为Dice与MHD,下面为在IBSR数据集上获得的脑结构分割结果。
图5 U-Net和所提出的模型在IBSR数据集上的结构级骰子性能