《计算方法》笔记之(四)线性代数方程组之 线性代数方程组解的可靠性


对于线型方程组:
A x = b Ax=b Ax=b
我们能够使用计算机解出线型方程组,但是这仍然不够。因为不知道这个解是否是正确的。在之前的学习中,我们解出一个方程之后要把答案带入进行检验。

对于一次方程 a x = b ax=b ax=b 来说,设 x ∗ x^* x a x = b ax=b ax=b 的精确解, x ~ \tilde x x~ 是其计算解,
∣ b − a x ~ ∣ &lt; ε |b-a\tilde x|&lt;\varepsilon bax~<ε,则 x ~ \tilde x x~ a x = b ax=b ax=b 的近似解。
证明:
x ~ \tilde x x~ a x = b ax=b ax=b 的近似解指的是 x ~ − x ∗ &lt; ε \tilde x-x^*&lt;\varepsilon x~x<ε
∣ b − a x ~ ∣ = ∣ a x ∗ − a x ~ ∣ = ∣ a ∣ ⋅ ∣ x ~ − x ∗ ∣ &lt; ε |b-a\tilde x|=|ax^*-a\tilde x|=|a|\cdot|\tilde x-x^*|&lt;\varepsilon bax~=axax~=ax~x<ε
∣ x ~ − x ∗ ∣ &lt; ε ∣ a ∣ |\tilde x-x^*|&lt;\frac {\varepsilon} {|a|} x~x<aε

那下面的说法能否成立呢?
x ∗ x^* x A x = b Ax=b Ax=b 的精确解, x ~ \tilde x x~ 是其计算解,若 ∣ b − A x ~ ∣ &lt; ε |b-A\tilde x|&lt;\varepsilon bAx~<ε,则 x ~ \tilde x x~ a x = b ax=b ax=b 的近似解。

1. 残向量

同样为了检验方程组的计算解是否为原方程组的近似解,可以尝试将计算解代入方程组中,假设计算解为 x ~ \tilde x x~ ,则残向量为: r = b − A x ~ r=b-A\tilde x r=bAx~ ,我们使用残向量来评价解的误差。

例如:

对于以下线性方程组:
( 1.000 2.000 0.499 1.001 ) ( x 1 x 2 ) = ( 3.000 1.500 ) \left( {\begin{matrix} {1.000}&amp;{2.000}\\ {0.499}&amp;{1.001} \end{matrix}} \right)\left( {\begin{matrix} { {x_1}}\\ { {x_2}} \end{matrix}} \right) = \left( {\begin{matrix} {3.000}\\ {1.500} \end{matrix}} \right) (1.0000.4992.0001.001)(x1x2)=(3.0001.500)
求出的计算解为 x ~ = ( 2.000 , 0.500 ) T \tilde x = {(2.000,0.500)^T} x~=(2.000,0.500)T,该解是否可靠?

准确解是 x ∗ = ( 1 , 1 ) T {x^*} = {(1,1)^T} x=(1,1)T ,但是求出的计算解为 x ~ = ( 2.000 , 0.500 ) T \tilde x = {(2.000,0.500)^T} x~=(2.000,0.500)T ,残向量为 r = ( 0.000 , 0.0015 ) T r = {(0.000,0.0015)^T} r=(0.000,0.0015)T ,但是误差向量并不是一个很小的量 e = x ∗ − x ~ = ( 1 1 ) − ( 2.0 0.5 ) = ( − 1 0.5 ) e = {x^*} - \tilde x = \left( {\begin{matrix} 1\\ 1 \end{matrix}} \right) - \left( {\begin{matrix} {2.0}\\ {0.5} \end{matrix}} \right) = \left( {\begin{matrix} { - 1}\\ {0.5} \end{matrix}} \right) e=xx~=(11)(2.00.5)=(10.5)

故而,残向量很小时,计算解与准确解之间仍会相差很大。 所以不能只根据残向量的大小判断解的可靠性。

2. 误差向量和范数

误差向量

误差向量定义: e = x ∗ − x ~ = ( ε 1 ε 2 ⋮ ε n ) = ( x 1 ∗ − x ~ 1 x 2 ∗ − x ~ 2 ⋮ x n ∗ − x ~ n ) e = {x^*} - \tilde x = \left( {\begin{matrix} { {\varepsilon _1}}\\ { {\varepsilon _2}}\\ \vdots \\ { {\varepsilon _n}} \end{matrix}} \right) = \left( {\begin{matrix} {x_1^* - { {\tilde x}_1}}\\ {x_2^* - { {\tilde x}_2}}\\ \vdots \\ {x_n^* - { {\tilde x}_n}} \end{matrix}} \right) e=x

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值