- 博客(55)
- 收藏
- 关注
原创 改动模型后,加载部分预训练权重文件
加载部分预训练权重文件最近在做姿态估计相关内容,需要将Hrnet模型修改,Hrnet是基于coco数据集训练的,coco数据集是17个关节点,而我需要的是15个关节点,在将数据集标好训练之后,发现由于数据量比较小,模型能够很快收敛,但是泛化性能极差,于是,就想着把之前的coco预训练权重文件拿出来一部分,对我自己的模型进行训练,果不其然,在使用部分预训练权重文件进行训练后,模型的泛化性有了很大的改善,现在分享给大家。1首先我们需要明确权重文件的类型是什么:我们在使用pytorch进行模型训练的时候,最后
2021-04-23 17:03:03
5248
6
原创 制作自己的coco关键点数据集
制作自己的coco关键点数据集1、将我们需要标注的图片进行重命名,由于coco数据集图片的名称是12位数字,形式如 00000000001。代码如下:import osfrom tqdm import tqdmimport codecsimport jsonfor root, _, path in os.walk(<保存图片的文件夹路径>): for s in tqdm(path): os.renames('<保存图片的文件夹路径>/{}'.for
2021-04-21 19:41:56
6009
94
原创 将VOC数据格式转换为Yolo格式
将VOC数据格式转换为Yolo格式import xml.etree.ElementTree as ETimport osclasses = ["person"]def convert(size, box): dw = 1./size[0] dh = 1./size[1] x = (box[0] + box[1])/2.0 y = (box[2] + box[3])/2.0 w = box[1] - box[0] h = box[3] - box[2
2021-04-07 16:31:42
557
原创 python-opencv 调取摄像头并保存图片
通过opencv-python 调用摄像头并保存图片import torch# -*- coding:utf-8 -*-import numpy as npimport cv2import matplotlib.pyplot as pltcap = cv2.VideoCapture(0)while True: ret, frame = cap.read() cv2.imshow('f', frame) if cv2.waitKey(1) & 0xFF ==
2020-12-28 19:41:30
1642
1
原创 批量改变目录下文件的名称
批量改变目录下文件的名称import os# top是目标文件夹(绝对路径),os.walk会读取其内的文件及文件夹直至空。 c是非子目录文件# a是当前路径目录 b是 当前路径下子目录# top是主目录路径for a, b, c in os.walk(top='data_printscreen'): n = len(c) for i in range(n): name = c[i].split('.')[1] ne
2020-11-30 21:43:18
177
原创 查看显卡信息
python查看gpu信息 并选择import torchdef select_device(id): force_cpu = False if id == -1: force_cpu = True cuda = False if force_cpu else torch.cuda.is_available() device = torch.device('cuda:{}'.format(id) if cuda else 'cpu') if not cuda
2020-11-23 16:41:15
369
原创 批量处理json数据
批量处理json数据import ospath = r"J:\experient\json"json_file =os.listdir(path)for file in json_file: os.system("D:\source\conda\envs\labelme\Scripts\labelme_json_to_dataset.exe %s" %(path+'/'+file))
2020-11-17 10:54:43
796
原创 EL图数据初步处理
使用python ,opencv进行数据集的初步处理数据来源最近从实验室师兄拿到一批太阳能板的EL图数据集,想通过语义分割的方式进行太阳能板的裂纹检测,由于拍摄角度比较倾斜不定,得到的图像没有规则,如下图:编写如下脚本,主要实现如下功能:1,将文件夹中的图片路径提取并保存为txt文件:import ospath = os.listdir('huizhou_
2020-11-12 21:40:00
1047
5
原创 简单将xml数据转换为txt数据
简单将xml数据转换为txt数据(仅当记录)import xml.etree.ElementTree as ETimport pickleimport osfrom os import listdir, getcwdfrom os.path import joinsets=['train','trainval']classes = ["mono"]def convert(size, box): dw = 1./size[0] dh = 1./size[1] x
2020-11-02 10:31:45
2670
原创 CAJ转PDF
CAJ转PDF有时候我们在知网下载的文件格式是CAJ格式的,但是CAJ格式需要对应的CAJ阅读器,这往往在手机等移动设备上很难实现,我们希望把它转换成PDF格式,网上大多数说的是用PDF转换器,但是这些转换器要么是收费产品,要么转换的文件大小受限,问题很多,其实很简单,我们只需要利用电脑自带的虚拟打印技术就可以实现这个功能。操作如下:1:打开你的控制面板—硬件和声音—设备和打印机2.用CAJ阅读器打开你下载的CAJ文件,进入打印界面,将打印机转换成***MIcrosoft print to PDF
2020-10-16 10:49:14
234
原创 Pytorch如何分析部分程序的占用时间
Pytorch如何分析部分程序的占用时间在进行pytorch程序代码的测试时,由于功能的不同,我们往往需要分模块进行, 但是最后给的时间却是一个程序跑下来所需要的时间,如果我们要观察部分程序执行的时间以及占比,这时候,我们只要在函数的前面加上两行代码即可,with torch.autograd.profiler.profile() as prof: print(prof.key_averages().table(sort_by="self_cpu_time_total"))如下:x = torch.
2020-10-15 21:46:24
1900
原创 将数据集划分为训练集以及测试集
将数据集简单地划分为测试集以及训练集import osimport randomtrain_percent = .9 # 训练集所占比例valid_percent = 0.1 # 测试集所占比例xmlfilepath = 'data-delete' #图片所在地相对路径total_file = os.listdir(xmlfilepath) #以列表地形式将文件夹中的图片名字罗列出num = len(total_file)list = range(num)tr = int(n
2020-09-20 14:27:33
3704
原创 Pytorch如何加载自己的数据集(复写Dataset类)
import torchimport osimport globimport randomimport csvfrom torch.utils.data import Dataset, DataLoaderfrom torchvision import transformsfrom PIL import Image#加载自己的数据集class Pokemon(Dataset): #定义自己的主函数,函数内变量名:根目录,图像的规模,以及模式(训练,验证或者测试) def
2020-07-31 10:48:57
614
原创 ubuntu16.04安装nvidia 驱动
ubuntu16.04安装nvidia 驱动之前试了网上所提供的各种方法,发现并没有什么用,后来直接sudo apt remove --purge nvidia*后sudo apt install nvidia-430竟然可以nvidia-smi 了,就感觉很神奇,希望能对你们的问题提供一种参考。(注意:后面的430是电脑支持的显卡驱动版本,可以通过ubuntu-drivers-devices找到对应的显卡驱动版本)...
2020-07-24 09:34:33
142
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅