- 博客(10)
- 收藏
- 关注
原创 gt_voc.py
first_part, second_part = stripped_line.split() # 取列表的第一个元素。# 输出图片保存在data_set / VOCdevkit / * / SegmentationClass文件夹下。# 指定TXT文件的路径(假设该文件位于base_address目录下,并命名为'mark.txt')# 输出图片保存在data_set / VOCdevkit / * / JPEGImages文件夹下。# # 保存图像为BMP格式到指定路径。
2025-01-16 10:00:13
705
原创 基于yolo数据集格式的copy-paste图像增广实现
获取某文件甲下所有.xxx文件名。c_p.py 实现cp功能。ts.py 测试增广的效果。
2024-11-29 17:14:14
437
原创 文件夹下读取dataset
torchvision.datasets.ImageFolder 是 PyTorch 中用于加载图像数据集的实用类,特别适用于图像分类任务。每个类别的图像存放在一个单独的子文件夹中,文件夹的名称即为该类别的标签。在使用 DataLoader 时,shuffle 参数用于在每个训练周期打乱数据顺序,batch_size 参数指定了每个批次包含的样本数。确保数据集目录结构与 ImageFolder 的期望相符,即每个类别的图像存放在单独的子文件夹中。loader:可选,一个函数,用于加载图像文件。
2024-11-11 14:52:19
236
原创 Iris 决策树实现
print('该测试集的测试正确率为:' + f"{accuracy:.2f}%")plt.show() # 显示图形。# 将数据分为训练集和测试集。# 将预测结果转换为整数类型。# 加载 Iris 数据集。# 创建决策树分类器并训练。
2024-11-11 13:01:55
603
原创 数据增强加入数据集
shuffle=is_train, # 是否打乱数据顺序(训练集需要打乱,测试集不需要)num_workers=4 # 用于数据加载的子进程数。root="../data", # 数据集存储目录。train=is_train, # 是否为训练集。batch_size=batch_size, # 批量大小。# 定义一个图像增强变换(例如,随机水平翻转和转换为张量)# 加载训练集数据加载器。# 加载测试集数据加载器。
2024-11-10 13:14:50
346
1
原创 图片数据增广
应用增强或变换(假设aug接受一个PIL图像并返回一个PIL图像)# 将NumPy数组转换为OpenCV格式(BGR)# 将PIL图像转换为NumPy数组(RGB格式)# 创建一个空列表来存储处理后的图像(OpenCV格式)# 将处理后的图像添加到行列表中。# 定义一个函数来应用图像增强或变换,并显示结果网格。# 将拼接后的行图像添加到总列表中。# 将行图像拼接成一个水平条。# 将所有行图像拼接成一个垂直网格。# 定义一个函数来显示OpenCV图像。# 显示拼接后的图像网格。
2024-11-10 12:46:23
254
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅