深度学习
文章平均质量分 70
from-WRF
这个作者很懒,什么都没留下…
展开
-
卷积网络
#卷积神经网络的缺点在卷积神经网络中,随着卷积和池化操作的交替进行,特征图的尺寸不断降低,同时特征图上的精细信息越来越稀疏而全局信息则越来越丰富,这使得尺度比较小的船名表识区域在特征图上占有的信息量越来越稀疏,并最终使得文本检测层对船名表识的检测能力下降。(是从论文上摘录下来,正确与否有待考证)#卷积:receptive field: 接受域,处于卷积网络更深的层中的单元,它们的...原创 2019-08-12 14:15:22 · 234 阅读 · 0 评论 -
pytorcn-python中的基础
#create tensors of shape(10,3) and (10,2)x= torch.randn(10,3)y=torch.randn(10,2) #loading data from numpyx=np.array([[1,2],[3,4]]) #convert the numpy arrary to a torch tensory = torch....转载 2018-12-28 21:24:25 · 583 阅读 · 0 评论 -
计算机视觉学习-前期
从一些文章中了解到当前做计算机视觉主要从两个方面切入:(1)从传统方图像处理的角度进行计算机视觉的研究;(2)基于深度学习的研究。后者涉及很多数学上的知识,推荐的书籍最多的是《深度学习》这本书,经过我粗略的浏览后,发现太多的数学知识点,加之对自身的考量(之前的机器学习就是先从知识点入手,结果还没入门已然放弃),所以不采取看书的方式入门。有一篇文章提到研究计算机视觉需要了解和学习的开源软件主要有...原创 2018-07-30 16:31:39 · 272 阅读 · 0 评论 -
caffe-前期
Caffe是一个深度学习框架,该框架主要包括五大组件:blobs/layers/nets、solver/proto。 blobs/layers/nets与solver/proto的区别与联系可以总结为:caffe通过layers的方式定义nets,而贯穿所有nets的结构就是caffe框架或者模型,对于layers而言,输入的就是blobs这种数据封装包格式的实际数据,当采用该框架进行...原创 2018-07-30 19:37:28 · 120 阅读 · 0 评论 -
机器学习-1
学习吴恩达机器学习1-3章主要内容:对机器学习在生活中的应用做了介绍(邮件分类,新闻分类,疾病预测,房价预测);机器学习算法分类及简要介绍;监督学习(supervised learning)中的单变量线性回归(linear regression with one variable);损失函数(cost function);梯度下降算法(grandient descent);将梯度下降算法应用到...原创 2018-08-01 22:18:14 · 121 阅读 · 0 评论 -
机器学习-3
2018年8月3、4、5日 吴恩达机器学习7、8、9、10章主要内容:线性回归、逻辑斯蒂回归的正则化;神经网络算法;应用机器学习的建议; 正则化)Regularized linear regressionCost function:;min j(θ)利用梯度下降算法求解最优参数:Repeat{ ...原创 2018-08-05 21:58:27 · 279 阅读 · 0 评论 -
机器学习-2
2018年8月2日 吴恩达机器学习4-6章主要内容:多变量的线性回归(linear regression with multiple variables);几个技巧让梯度下降算法(gradient descent)收敛的更快些;另一种minimize J(θ)的方法: normal equation;有关octave的操作;向量化(vectorization);logistic regress...原创 2018-08-02 22:38:00 · 149 阅读 · 0 评论 -
机器学习-模型评估中的性能度量
# 错误率与精度错误率是指:分类错误的样本数占样本总数的比例精度是指:分类正确的样本数占样本总数的比例# (precision)查准率(准确率)、(recall)查全率(召回率)和F1precision: 预测出的正例中有多少是真正的正例recall:样本中有多少正例被预测出来了真实情况 预测结果 正例 反例 正例 TP(真正例) FN...原创 2019-08-12 14:16:18 · 317 阅读 · 0 评论 -
Faster R-CNN学习
#目标检测基础目标检测的基本步骤:1、检测窗口的选择;2、图像特征的提取;3、分类器的设计特征提取:在选定候选区域之后,需要提取图像的特征来进行表达,传统的有监督的方法和以CNN为代表的无监督特征学习方法都有用。常见的传统特征有haar特征、LBP、HOG等。这些特征都是研究人员通过长时间的学术研究和实际项目验证得来的,虽然在比较简单的任务中可以取得很好的结果,但是设计成本很高,而且面对复...原创 2019-08-12 14:16:38 · 181 阅读 · 0 评论