题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=247
大意:有n个城市, m条道路;每个两个城市之间最多有一条道路直接相连;道路有些是双向的有些是单向的,有一种商品在各个城市的物价不相同, 现在你可以从1号城市走到n号城市,道路可以走多次;问你可以最多赚多少钱(只能买卖一次)。
我看了这道题之后没思路, 就上网百度一下题解, 发现别人就用了两次广搜就过了, 第一次从1搜到n,用一个数组minval【i】表示从1搜到i物品的最低单价。把图反向之后从n搜到1, 用一个数组maxval【i】表示从1搜到i物品的最高单价。最后把所有两次都能搜到的点maxval 和 minval的差值找出来,取最大即可。
但是这到题的正解是强联通缩点+dfs;先把图处理成一个DAG,保存每个节点的最高单价,和最低单价。dfs时从1所在的节点,搜到n所在的节点。
广搜的代码:
#include<stdio.h>
#include<string.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 10;
vector<int> G[maxn], Rg[maxn];
int minn[maxn], maxm[maxn], val[maxn];
bool vis[maxn], rvis[maxn];
int n, m;
void Add(int a, int b)
{
G[a].push_back(b);
Rg[b].push_back(a);//把图反向
}
void bfs()
{
memset(vis, false, sizeof(vis));
memset(rvis, false, sizeof(rvis));
int s = 1;//从1开始搜
queue<int> Q;
Q.push(s);
vis[s] = true;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
for(int i = 0; i < G[x].size(); i++)
{
int v = G[x][i];
minn[v] = min(minn[v], minn[x]);
if(!vis[v])
{
Q.push(v);
vis[v] = true;
}
}
}
s = n;//从n反着搜
Q.push(s);
rvis[s] = true;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
for(int i = 0; i < Rg[x].size(); i++)
{
int v = Rg[x][i];
maxm[v] = max(maxm[v], maxm[x]);
if(!rvis[v])
{
Q.push(v);
rvis[v] = true;
}
}
}
}
int main()
{
while(~scanf("%d%d", &n, &m))
{
for(int i = 1; i <= n; i++)
{
scanf("%d", &val[i]);
minn[i] = maxm[i] = val[i];
G[i].clear(), Rg[i].clear();
}
while(m--)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
if(c == 2)
Add(b, a);
Add(a, b);
}
bfs();
int ans = 0;
for(int i = 1; i <= n; i++)//查询
if(vis[i] && rvis[i] && ans<maxm[i]-minn[i])
ans = maxm[i] - minn[i];
printf("%d\n", ans);
}
return 0;
}
强联通+dfs
#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<set>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 10;
const int inf = 0x3f3f3f3f;
vector<int> G[maxn];
set<int> Sg[maxn];
int dfn[maxn], low[maxn], sccno[maxn], maxval[maxn], minval[maxn], val[maxn];
vector<int> scc[maxn];
stack<int> S;
int cur, scc_cnt, s, sn, ans;
void dfs(int u)//强联通缩点
{
low[u] = dfn[u] = ++cur;
S.push(u);
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(!dfn[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
++scc_cnt;
scc[scc_cnt].clear();
while(!S.empty())
{
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
scc[scc_cnt].push_back(x);
if(x == u)
break;
}
}
}
void find_scc(int n)强联通初始化
{
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
cur = scc_cnt = 0;
dfs(1);
}
void Gg(int n)//缩点后从新构图
{
for(int i = 0; i <= scc_cnt; i++)
Sg[i].clear();
memset(minval, 0x3f, sizeof(minval));
memset(maxval, 0, sizeof(maxval));
for(int i = 1; i <= scc_cnt; i++)
{
for(int j = 0; j < scc[i].size(); j++)
{
int x = scc[i][j];
if(x == n)
sn = i;
if(x == 1)
s = i;
minval[i] = min(minval[i], val[x]);
maxval[i] = max(maxval[i], val[x]);
}
}
for(int i = 1; i <= n; i++)
{
for(int j = 0; j < G[i].size(); j++)
{
int v = G[i][j];
if(sccno[i] != sccno[v])//用set的是为了方便, 因为强联通缩点后,任意连个节点之间可能有多条边相连,只需要建一条就行了, set有自动去重功能
Sg[sccno[i]].insert(sccno[v]);
}
}
}
void dfs(int u, int minn, int maxm)//minn表示所能搜到点的最小单价, maxm为但前所能到节点赚的最大价值
{
minn = min(minn, minval[u]);
maxm = max(maxm, maxval[u]-minn);
if(u == sn)
{
ans = max(ans, maxm);
return ;
}
set<int> :: iterator it;
for(it = Sg[u].begin(); it != Sg[u].end(); it++)
{
int v = *it;
dfs(v, minn, maxm);
}
}
int main()
{
int n, m;
while(~scanf("%d%d", &n, &m))
{
for(int i = 1; i <= n; i++)
{
scanf("%d", &val[i]);
G[i].clear();
}
while(m--)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
if(c == 2)
G[b].push_back(a);
G[a].push_back(b);
}
find_scc(n);
Gg(n);
ans = 0;
dfs(s, inf, -inf);
printf("%d\n", ans);
}
return 0;
}