- 博客(4)
- 收藏
- 关注
原创 CS229 Lecture Notes(4): Generative Learning Algorithm
Generative Learning Algorithm discriminative learning algorithm: Algorithms try to learn p(y|x)p(y|x) directly or try to learn mappings f(x)f(x) directly from the space of inputs \mathcal{X} to the la
2016-04-18 14:29:05
260
原创 CS229 Lecture Notes(3): Generalized Linear Models
The exponential family A class of distributions is in the exponential family if it can be written in the from p(y,η)=b(y)exp(ηTT(y)−a(η))p(y,\eta)=b(y)exp(\eta^TT(y)-a(\eta)) where:η\eta: the natural
2016-04-18 14:27:55
360
原创 CS229 Lecture Notes(2): Logistic Regression
Logistic Regression Binary classification problem Failure of OLS regression in binary classification problem:hard to define the threshold no sense if y>1y>1 or y<0y<0 Hypothesis: hθ(x)=g(θTx)=11+e−θTxh
2016-04-18 14:26:26
303
原创 CS229 Lecture Note(1): Linear Regression
1. LMS Algorithm The Ordinary Least Squares Regression Model: h(θ)=θTxh(\theta)=\theta^Tx Cost Function: J(θ)=12∑mi=1(hθ(xi)−yi)2J(\theta)=\frac{1}{2}\sum_{i=1}^m(h_\theta(x^i)-y^i)^2 LMS (least mean s
2016-04-12 13:33:55
431
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人