深度学习入门——基于python的理论与实现
文章平均质量分 90
通过对《深度学习入门——基于python的理论与实现》这本书的学习,将学习过程中的笔记记录下来,一起学习,一起快乐。
ℳ๓执手ꦿ听风吟້໌ᮨ
生活就是平平静静面对狂风暴雨。
展开
-
深度学习入门之批处理
输入数据的集合称为批(batch)。通过批处理进行,以批为单位进行推理处理,能够实现高速的运算。原创 2022-12-15 17:35:31 · 648 阅读 · 0 评论 -
深度学习入门之输出层的设计
神经网络可以用在分类问题和回归问题上,不过需要根据情况改变输出层的激活函数。一般而言,回归问题使用恒等函数,分类问题使用softmax函数。求解机器学习问题放入步骤可以分为‘学习’和“推理”两个过程,首先,在学习阶段进行模型的学习,然后,在推理阶段,用学到的模型对未知数据进行推理(分类)。推理过程一般会省略输出层的softmax函数。原创 2022-11-26 11:49:50 · 1189 阅读 · 0 评论 -
深度学习入门之3层神经网络的实现
对神经网络进行简单的python实现,以3层神经网络为对象,实现输入到输出的前向处理,利用numpy的多维数组,尽可能减少代码量完成神经网络的前向处理过程。主要介绍了神经元的各层信号之间的传递,简单用python代码实现一个3层神经网络的前向传播过程。原创 2022-11-21 11:31:41 · 2280 阅读 · 2 评论 -
深度学习入门之多维数组运算
对于实现神经网络,学会使用numpy多维数组的使用是必须的。多维数组简单地讲就是‘数字的集合’,数字排一列的集合、排成行乘列的长方形集合、排成长乘宽乘高的立方体形状,或者说N维状的集合都称为多维数组。主要简单介绍了一下矩阵在numpy乘积运算中的一个过程以及运算需要注意的几个小技巧。原创 2022-11-20 12:01:50 · 1213 阅读 · 0 评论 -
深度学习入门之激活函数
将输入信号的总和转换为输出信号,这种函数一般称为激活函数(activation function)。激活函数作用在于决定如何来激活输入信号的总和。激活函数作为感知机和神经网络的桥梁。它的出现使得输出从单一变为数值化。激活函数以阈值为界,一旦输入超过阈值,就切换输出,这样的函数称为‘阶跃函数’。因此,可以说感知机中使用了阶跃函数作为激活函数。接下来,简单介绍一下激活函数的种类。原创 2022-11-19 15:58:56 · 1775 阅读 · 0 评论 -
深度学习入门之神经网络概述
尽管多层感知机可能可以隐含表达复杂函数,但是一个很重要的过程,就是设定权重参数的工作依旧是人工给定,这样就会存在问题,当我们不知道权重参数或者问题过于复杂,权重参数过于庞大时,我们就无法使用多层感知机,因为确定合适的、能符合预期的输入输出权重参数,难以确定。上一次博客中,不管是构建与门、与非门、或门、异或门,都是我们根据已知的输入输出来确定相对应的权重参数,即根据真值表情况确定权重参数。原创 2022-11-19 14:36:41 · 302 阅读 · 0 评论 -
深度学习入门之多层感知机
单层感知机由于存在局限性,只能划分线性空间,对于非线性空间的处理,对于单层感知机却无能为力,无法进行有效的划分,因此,需要学习多层感知机,用于处理非线性空间。以上就是对多层感知机的简单介绍。原创 2022-11-14 17:13:06 · 2001 阅读 · 0 评论 -
深度学习入门之python数据类型
随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习深度学习,并且由于python语言的通俗易懂,较为容易上手,受到广大开发者的喜爱,现在有很多基于python语言下的深度学习框架,例如Pytorch、Tensorflow等等,越来越多的人开始基于这些深度学习框架下的开发,本文就简单介绍了机深度学习的基础内容之python数据类型。原创 2022-11-13 16:46:32 · 366 阅读 · 0 评论 -
深度学习入门之感知机
本文将简单介绍感知机(perceptron)这一算法,感知机是由美国学者Frank Rosenblatt在1957年提出的,感知机是作为神经网络(深度学习)的起源的算法。原创 2022-11-14 11:30:27 · 1239 阅读 · 0 评论