线性回归(最小二乘法)
定义:线性回归在假设特证满足线性关系,根据给定的训练数据训练一个模型,并用此模型进行预测。
举例:我们假设一个线性方程 y=2x+1 y = 2 x + 1 , x变量为商品的大小, y y 代表为销售量;当月份 时,我们就能根据线性模型预测出 销量为 y=11 y = 11 ;对于上面的简单的例子来说,我们可以粗略把 y=2x+1 y = 2 x + 1 看到回归的模型
然而更一般的情况是, x x 不止一个,也就是说特征不会只有一个,而是许多个,可以吧¥x¥看做向量,
这仍然是一个线性的关系 y=w1x1+w1x1+⋯+wnxn y = w 1 x 1 + w 1 x 1 + ⋯ + w n x n ,写成向量形式就是 y=wTx+b y = w T x + b ,其中, w w 和 都是向量。
我们有许多样本,已知每个样本的特征和label 。问给出一个新的样本,已知特征,预测label。
我们需要从这些已知的数据中学习到线性模型的权重就是向量 w=(w1,…,wn) w = ( w 1 , … , w n ) 和 b b 。
模型推导过程:
形式化表示就是
模型假定好后,我们把训练数据代入上面的设定模型中,可以通过模型预测一个样本最终值;