线性回归(最小二乘法)

线性回归是一种预测模型,通过最小化误差平方和来确定模型参数。当特征不止一个时,可以表示为向量形式y=wTx+b。在大量样本中,误差ε遵循高斯分布。线性回归的损失函数由此得出,通过梯度下降法求解最优参数θ。岭回归是线性回归的拓展,增加了正则项以避免过拟合。
摘要由CSDN通过智能技术生成

线性回归(最小二乘法)

定义:线性回归在假设特证满足线性关系,根据给定的训练数据训练一个模型,并用此模型进行预测。

举例:我们假设一个线性方程 y=2x+1 y = 2 x + 1 , x变量为商品的大小, y y 代表为销售量;当月份 x = 5 时,我们就能根据线性模型预测出 销量为 y=11 y = 11 ;对于上面的简单的例子来说,我们可以粗略把 y=2x+1 y = 2 x + 1 看到回归的模型

然而更一般的情况是, x x 不止一个,也就是说特征不会只有一个,而是许多个,可以吧¥x¥看做向量, x = ( x 1 , x 2 , , x n )

这仍然是一个线性的关系 y=w1x1+w1x1++wnxn y = w 1 x 1 + w 1 x 1 + ⋯ + w n x n ,写成向量形式就是 y=wTx+b y = w T x + b ,其中, w w x 都是向量。

我们有许多样本,已知每个样本的特征和label 。问给出一个新的样本,已知特征,预测label。

我们需要从这些已知的数据中学习到线性模型的权重就是向量 w=(w1,,wn) w = ( w 1 , … , w n ) b b

模型推导过程

形式化表示就是   

(1) h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 (2) h θ ( x ) = i = 0 n θ i x i = θ T x

模型假定好后,我们把训练数据代入上面的设定模型中,可以通过模型预测一个样本最终值;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值