数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历
Time Limit: 1000MS Memory Limit: 65536KB
Submit Statistic
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Example Input
1
6 7 0
0 3
0 4
1 4
1 5
2 3
2 4
3 5
Example Output
0 3 4 2 5 1
Hint
以邻接矩阵作为存储结构。
Author
#include <iostream>
#include <queue>
using namespace std;
const int MAX = 5500;
int mmp[MAX][MAX];
int vt[MAX];
int main()
{
int n;
cin >> n;
while (n--)
{
int v, e;
int s;
cin >> v >> e >> s;
int i;
int va, vb;
memset(mmp, 0, sizeof(mmp));
memset(vt, 0, sizeof(vt));
for (i = 0; i < e; i++)
{
cin >> va >> vb;
mmp[va][vb] = mmp[vb][va] = 1;
}
queue<int>qu;
qu.push(s);
vt[s] = 1;
int flag = 1;
while (!qu.empty())
{
int tp;
tp = qu.front();
qu.pop();
if (flag)
{
flag = 0;
cout << tp;
}
else cout << " " << tp;
for (i = 0; i < e; i++)
{
if (!vt[i] && mmp[i][tp])
{
vt[i] = 1;
qu.push(i);
}
}
}
cout << endl;
}
return 0;
}