Elasticsearch 8.X 如何利用嵌入向量提升搜索能力?

众所周知,Elasticsearch 是一个非常流行的搜索引擎,因为它速度快、扩展性强,尤其擅长全文搜索。

近两年,向量嵌入(Vector Embedding)技术的引入,让 Elasticsearch 在处理高级搜索场景时变得更强大,比如语义搜索、推荐系统和 AI 驱动的查询。

👉 欢迎加入小哈的星球,你将获得: 专属的项目实战 / 1v1 提问 / Java 学习路线 / 学习打卡 / 每月赠书 / 社群讨论

  • 新项目:《从零手撸:仿小红书(微服务架构)》 收尾中,基于 Spring Cloud Alibaba + Spring Boot 3.x + JDK 17..., 点击查看项目介绍;演示地址:http://116.62.199.48:7070/

  • 《从零手撸:前后端分离博客项目(全栈开发)》 2期已完结,演示链接:http://116.62.199.48/;

  • 专栏阅读地址:https://www.quanxiaoha.com/column

截止目前,累计输出 90w+ 字,讲解图 3556+ 张,还在持续爆肝中.. 后续还会上新更多项目,目标是将 Java 领域典型的项目都整一波,如秒杀系统, 在线商城, IM 即时通讯,Spring Cloud Alibaba 等等,戳我加入学习,解锁全部项目,已有3100+小伙伴加入

图片

我们来一步步拆解这个技术。

1、什么是向量嵌入?

简单来说,向量嵌入就是把文字、图片或者其他数据变成一组多维的数字(数学数组)。这些数字能让机器理解数据之间的“语义相似性”。

比如,你搜索“新能源 小米”汽车,即使结果里没有完全匹配的关键词,系统也能返回像“小米 SU7”这样的内容,因为它们在语义上是相关的。

2、在Elasticsearch中使用向量嵌入

要在 Elasticsearch 里用上向量嵌入,需要一个完整的流程:

2.1 生成向量嵌入

用AI模型(比如OpenAI的嵌入模型或Transformer模型)把原始文本转成一组数字,这些数字反映了数据之间的关系。

2.2 在Elasticsearch中存储向量

把生成的向量作为字段存进 Elasticsearch,方便后续基于相似性的查询。

2.3 用向量查询

不再是简单的关键词搜索,而是把查询也转成向量,通过比较向量之间的“距离”来找到最接近的结果,这种方法叫“最近邻搜索”(Nearest Neighbor Search)。

2.4 向量嵌入大致流程如下

  • Step1:提取关键数据(比如标题、描述)。

  • Step2:用AI模型生成嵌入向量(可以用 Python工具,比如HuggingFace 或 sentence-transformers)。

  • Step3:把这些向量存进Elasticsearch,用的是“dense_vector”字段类型。

    深入浅出 Elasticsearch 的 dense_vector 字段类型

  • Step4:通过Elasticsearch的 KNN(k-Nearest Neighbor)功能实现向量查询。

接下来,我们重点聊聊怎么为 Elasticsearch 生成向量嵌入,尤其针对日志数据的场景,咱们介绍了两种方法。

3、基于 Python 的实现向量嵌入

用Python实现时,通常会借助elasticsearch或requests库,直接跟Elasticsearch交互。

完整代码实现如下:

from elasticsearch import Elasticsearch, helpersimport requestsimport configparserimport warningsimport timeimport randomimport concurrent.futuresimport logginglogging.basicConfig(level=logging.INFO)logger = logging.getLogger(__name__)# 忽略警告信息(如果需要)warnings.filterwarnings("ignore")# 初始化 Elasticsearch 客户端,根据指定的配置文件读取连接信息。def init_es_client(config_path='./conf/config.ini'):    """初始化并返回基于配置文件中的 Elasticsearch 客户端"""    config = configparser.ConfigParser()    config.read(config_path)    es_host = config.get('elasticsearch', 'ES_HOST')    es_user = config.get('elasticsearch', 'ES_USER')    es_password = config.get('elasticsearch', 'ES_PASSWORD')    es = Elasticsearch(        hosts=[es_host],        basic_auth=(es_user, es_password),        verify_certs=False,        ca_certs='conf/http_ca.crt'    )    return es# 设置嵌入服务 URL 为本地 Ollama 的端点EMBEDDING_SERVICE_URL = "http://localhost:11434/api/embeddings"# 从 Elasticsearch 中获取尚未生成嵌入的文档,使用 scroll API 提高效率。def fetch_documents_from_elasticsearch(es_client, index="logs", query=None, batch_size=25):    """    从 Elasticsearch 中获取缺少嵌入的文档    """    query = query or {        "query": {            "bool": {                "must_not": {"exists": {"field": "embedding"}}            }        },        "size": batch_size,        "sort": [{"@timestamp": "asc"}]    }    response = es_client.search(index=index, body=query, scroll="1m")    scroll_id = response["_scroll_id"]    documents = response["hits"]["hits"]    while documents:        for doc in documents:            yield doc        response = es_client.scroll(scroll_id=scroll_id, scroll="1m")        scroll_id = response["_scroll_id"]        documents = response["hits"]["hits"]# 通过向嵌入服务发送 POST 请求,为给定的文本获取嵌入向量。def fetch_embeddings(text):    try:        response = requests.post(            EMBEDDING_SERVICE_URL,            json={"model": "all-minilm", "prompt": text},            timeout=10        )        response.raise_for_status()        result = response.json()        logger.info("result.embedding: %s", result["embedding"])        return result.get("embedding")    except requests.exceptions.RequestException as e:        logger.error("Error fetching embedding: %s", str(e))        return None# 更新 Elasticsearch 中的文档,添加嵌入向量及元数据,使用脚本避免覆盖已有数据。def update_document_in_elasticsearch(es_client, doc_id, index="logs", embedding=None):    """    更新 Elasticsearch 文档,添加嵌入数据    """    body = {        "script": {            "source": '''                if (ctx._source.containsKey("embedding_processed_at") && ctx._source.embedding_processed_at != null) {                    ctx.op = "noop";                } else {                    ctx._source.embedding = params.embedding;                    ctx._source.embedding_processed_at = params.timestamp;                    ctx._source.processing_status = params.status;                    if (params.error_message != null) {                        ctx._source.error_message = params.error_message;                    }                }            ''',            "params": {                "embedding": embedding if embedding else None,                "timestamp": time.strftime('%Y-%m-%dT%H:%M:%SZ'),                "status": "failed" if embedding is None else "success",                "error_message": None if embedding else "嵌入生成失败"            }        }    }    es_client.update(index=index, id=doc_id, body=body)# 主函数,协调获取文档、生成嵌入并更新 Elasticsearch 的流程,按批次处理。def process_documents(es_client, batch_size=25):    """    主函数:获取文档,生成嵌入,并更新 Elasticsearch    """    for doc in fetch_documents_from_elasticsearch(es_client, batch_size=batch_size):        doc_id = doc["_id"]        text_content = doc["_source"].get("content", "")        embedding = fetch_embeddings(text_content)        update_document_in_elasticsearch(es_client, doc_id, embedding=embedding)if __name__ == "__main__":    # 初始化 Elasticsearch 客户端    es = init_es_client(config_path='./conf/config.ini')    # 开始处理文档    process_documents(es, batch_size=25)

其中:Ollama 是一个轻量级的开源工具,用于运行语言模型并生成嵌入向量(embeddings)。在这里,它被用作嵌入生成服务。

最核心:"model": "all-minilm"。主要指——指定使用名为 "all-minilm" 的模型来生成嵌入向量。

all-minilm 是 Sentence Transformers 模型家族中的一种轻量级模型(基于 MiniLM),适用于生成短文本的嵌入,速度快且资源占用低。 Ollama 支持加载此类模型,并通过 API 提供服务。

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

执行结果:

image.png

3.1 python 方案嵌入向量优点

  • 灵活性强——可以完全控制数据处理、错误处理和重试策略。

  • 调试方便——支持详细的日志记录和调试。

  • 精细控制——能调整并发、批次大小和重试逻辑。

  • AI集成简单——跟机器学习模型、大语言模型无缝衔接。

3.2 python 方案嵌入向量缺点

  • 扩展性有限——Python的全局解释器锁(GIL)限制了多线程在CPU密集任务中的表现。

  • 开发成本高——需要手动处理重试、错误监控和优化。

  • 资源占用多——处理大数据时,内存和 CPU 消耗较高。

4、基于 Logstash 实现向量嵌入

4.1 概览

Logstash 是一个轻量级、可扩展的 ETL 工具,特别适合处理大数据流。

4.2 Logstash 嵌入向量实操指南

4.2.1 【输入】Elasticsearch 输入
input {
  elasticsearch {
    hosts => ["https://127.0.0.1:9200"]
    user => "elastic"
    password => "changeme"
    ssl_enabled => true
    ca_file => "E:\logstash-8.15.3-windows-x86_64\logstash-8.15.3\config\http_ca.crt"
    index => "logs_20250409"
    query => '
      {
        "query": {
          "bool": {
            "must_not": {
              "exists": {
                "field": "embedding"
              }
            }
          }
        }
      }
    '
    schedule => "*/1 * * * *"
    docinfo => true
 docinfo_target => "[@metadata]"     #这行非常重要
    size => 25
  }
}
4.2.2 【中间处理】过滤:调用嵌入服务
filter {
  http {
    url => "http://localhost:11434/api/embeddings"  # Updated to Ollama's default endpoint
    verb => "POST"
    body_format => "json"
    body => { 
      "model" => "all-minilm"               # Added model field for Ollama compatibility
      "prompt" => "%{[content]}"            # Changed "text" to "prompt" for Ollama
    }
    target_body => "embedding_response"
  }
}
4.2.3【输出】更新Elasticsearch
output {
  elasticsearch {
    hosts => ["https://127.0.0.1:9200"]  # Updated to https for SSL
    user => "elastic"
    password => "changme"
    ssl_enabled => true
    cacert => "E:\logstash-8.15.3-windows-x86_64\logstash-8.15.3\config\http_ca.crt"
    index => "logs_20250409"
    document_id => "%{[@metadata][_id]}"  # Ensure correct document ID usage
    action => "update"
    doc_as_upsert => true                # Ensure documents are created if they don't exist
    retry_on_conflict => 5               # Increase the retry attempts for handling conflicts
  }
}

4.3 Logstash 方案优点

  • 扩展性强——通过管道工作线程轻松扩展。

  • 容错性好——内置重试和故障处理机制。

  • 开发简单——用声明式配置,几乎不用写代码。

  • 高效处理——专为高吞吐量数据流优化。

4.4 Logstash 方案缺点

  • 调试困难——出错时排查问题不灵活。

  • 定制性弱——不支持复杂的自定义逻辑或原生ML模型。

  • 依赖性强 ——跟Elasticsearch耦合紧密,替换成本高。

5、如何选择最适合你的方法?

5.1 选型 Python 的情况

需要复杂的自定义逻辑或集成机器学习模型。希望对每个处理步骤有精细控制。要跟Elasticsearch之外的多个系统对接。

5.2 选型 Logstash的情况

需要高效处理海量日志。希望扩展性强,开发工作量少。想要一个开箱即用的ETL方案,专为 Elasticsearch 优化。

6、总结

如果你的目标是处理大规模、高吞吐量的日志数据,Logstash 通常是更好的选择。但如果你的工作流需要高级定制或机器学习支持,Python 会更合适。

👉 欢迎加入小哈的星球,你将获得: 专属的项目实战 / 1v1 提问 / Java 学习路线 / 学习打卡 / 每月赠书 / 社群讨论

  • 新项目:《从零手撸:仿小红书(微服务架构)》 收尾中,基于 Spring Cloud Alibaba + Spring Boot 3.x + JDK 17..., 点击查看项目介绍;演示地址:http://116.62.199.48:7070/

  • 《从零手撸:前后端分离博客项目(全栈开发)》 2期已完结,演示链接:http://116.62.199.48/;

  • 专栏阅读地址:https://www.quanxiaoha.com/column

截止目前,累计输出 90w+ 字,讲解图 3556+ 张,还在持续爆肝中.. 后续还会上新更多项目,目标是将 Java 领域典型的项目都整一波,如秒杀系统, 在线商城, IM 即时通讯,Spring Cloud Alibaba 等等,戳我加入学习,解锁全部项目,已有3100+小伙伴加入

图片

图片

图片

1. 我的私密学习小圈子,从0到1手撸企业实战项目~
2. 阿里又开源一款数据同步工具 DataX,稳定又高效,好用到爆!
3. kafka 分布式的情况下,如何保证消息的顺序消费?
4. 抖音服务器带宽有多大,才能供上亿人同时刷?
最近面试BAT,整理一份面试资料《Java面试BATJ通关手册》,覆盖了Java核心技术、JVM、Java并发、SSM、微服务、数据库、数据结构等等。
获取方式:点“在看”,关注公众号并回复 Java 领取,更多内容陆续奉上。
PS:因公众号平台更改了推送规则,如果不想错过内容,记得读完点一下“在看”,加个“星标”,这样每次新文章推送才会第一时间出现在你的订阅列表里。
点“在看”支持小哈呀,谢谢啦
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值