java练习本(原每日一练)(2019-04-28)

名人名言

昨日翻译

“Many of life’s failures are people who did not realize how close they were to success when they gave up.”

——Thomas A. Edison

“ 生活中的许多失败都是那些在放弃时没有意识到自己离成功有多近的人。”

——托马斯 爱迪生

今日名言

“Success is just a war of attrition. Sure, there’s an element of talent you should probably possess. But if you just stick around long enough, eventually something is going to happen.”

——Dax Shepard

2019.04.27问题及解析

题目
public class Print {
    public static void main(String[] args) {
        int i = 0;
        for(print("小");print("刀") && i < 2;print("666")){
            i++;
            print("帅");
        }
    }


    private static boolean print(String str){
        System.out.print(str);
        return true;
    }
}public class Print {
    public static void main(String[] args) {
        int i = 0;
        for(print("小");print("刀") && i < 2;print("666")){
            i++;
            print("帅");
        }
    }


    private static boolean print(String str){
        System.out.print(str);
        return true;
    }
}

请问结果为:

A.小刀666帅

B.小刀帅666

C.小刀帅小刀帅666

D.以上答案均不正确

E.运行错误

F.编译错误

答案与解析

1.相关知识

for循环“;”隔开的三个部分别为初始化、条件判断、条件变化,我们最常见的情况就是

for(int i = 1;i<5;i++)这样的形式。

&&逻辑与运算符,两边结果均为真时才为真。

2.代码流程

定义了Print类

定义了main方法,定义了局部变量i=0

for循环初始化中调用print方法传递参数”小“,条件判断时调用print方法传递参数“刀”,条件变化调用print方法传递参数”666“

i++

调用print方法传递“帅”

定义了print方法,需要传递String类型参数str

输出传入的参数str

返回真

3.答案解析

首先初始化输出小

之后判定时输出刀,此时i=0<2循环条件满足,执行循环体内容,控制台此时为:小刀

i++,i变为1

输出帅,控制台此时为:小刀帅

调用条件变化print,输出666,控制台此时为:小刀帅666

再次判断循环条件输出刀,i=1<2满足循环条件,执行循环内容,控制台此时为:小刀帅666刀

i++,i变为2

输出帅,控制台此时为:小刀帅666刀帅

执行条件变化,输出666,控制台此时为:小刀帅666刀帅666

再次判断循环条件输出刀,此时i=2<2为false,终止循环,执行结束

控制台最终结果为小刀帅666刀帅666刀

答案选:D

2019.04.28问题

public class Test {
    public static void main(String[] args) {
        Add add = new Add();
        ThreadFun thread1 = new ThreadFun(add);
        ThreadFun thread2 = new ThreadFun(add);
        ThreadFun thread3 = new ThreadFun(add);
        thread1.start();
        thread2.start();
        thread3.start();
    }
}


class ThreadFun extends Thread{
    private Add add;
    ThreadFun(Add add){
        this.add = add;
    }
    public void run(){
        synchronized (add){
            add.add();
        }
    }
}


class Add{
    private int num1;
    int num2;
    void add(){
        num1 += 3;
        num2 += 3;
        System.out.print(num1 + " " + num2);
    }
}

请问结果为:

A.0 33 66 9

B.3 36 69 9

C.6 66 69 9

D.3 63 63 3

往期回顾

java练习本(原每日一练)|(2019-04-27)

java练习本(原每日一练)|(2019-04-26)

java练习本(原每日一练)|(2019-04-25)

java练习本(原每日一练)|(2019-04-24)

java练习本(原每日一练)|(2019-04-23)

java练习本(原每日一练)|(2019-04-22)

java练习本(原每日一练)|(2019-04-21)

java练习本(原每日一练)|(2019-04-20)

java练习本(原每日一练)|(2019-04-19)

java练习本(原每日一练)|(2019-04-18)

java练习本(原每日一练)|(2019-04-17)

java练习本(19_04_16)|继承——访问修饰符、覆盖

java练习本(19_04_15)|lang包类——Math

java每日一练(19_04_12)|循环语句——for

java每日一练(19_04_11)|条件语句——switch

java每日一练(19_04_10)|异常—— try catch finally

java每日一练(19_04_09)|面向对象—— 继承、访问修饰符

java每日一练(19_04_08)|运算符、循环—— for、++自增

java每日一练(19_04_07)|基础数据类型、包装类—— double、float、int、Double

java每日一练(19_04_03)|HashMap、Hashtable

java每日一练(19_04_02)|instanceof关键字

加入我们吧~

眼过千遍,不如手过一遍,一定一定要把自己的想法写出来(想法不论对错,写你所想就是进步),这样才会有所收获,你的每一个留言和分享小刀都会认真回复,彼此学习共同进步~

小刀和小伙伴在学习群里

等你来一起监督学习哦,坚持!加油!

进群请加小刀微信: best396975802

END


微信群请点击公众号菜单进微信群

文字|天堂

排版|花音

你点的每个在看,我都认真当成了喜欢

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值