理论基础
1、概念:
对于表或分区,进一步细分成桶。
分桶方式:
对列进行hash再对桶个数取模,确定记录入桶。
2、操作
普通表:
create table nor_tab(id int,name String,age int) row format delimited
fields terminated by '\t'
lines terminated by '\n';
加载数据:
load data local inpath '/root/b.txt' overwrite into table nor_tab;
桶表:
create table buc_tab(id int,name String,age int) clustered by (age) into 3 buckets
row format delimited
fields terminated by '\t'
lines terminated by '\n';
#####这儿和分区表不一样,分区表的分区字段不在建表字段中,而分桶字段在建表字段中。
往桶表插入数据:
insert into buc_tab select id,name,age from nor_tab;
查看hdfs目录:
[root@Linux005 ~]# hdfs dfs -ls /user/hive_remote/warehouse/buc_tab
Found 3 items
-rwxr-xr-x 1 root supergroup 10 2019-04-24 19:36 /user/hive_remote/warehouse/buc_tab/000000_0
-rwxr-xr-x 1 root supergroup 11 2019-04-24 19:36 /user/hive_remote/warehouse/buc_tab/000001_0
-rwxr-xr-x 1 root supergroup 12 2019-04-24 19:36 /user/hive_remote/warehouse/buc_tab/000002_0
3、配置参数
hive.enforce.bucketing
该参数在hive 1.x版本中默认为false,即不支持分桶。而在hive 2.x中,该参数默认为true。
mr运行时会根据桶的数量进行reduce task的数量。
4、分桶的作用
A)获得更高的查询效率:全表查询或分区查询转换成桶查询
B)大表join:
对于两张大表的join,执行reduce join(shuffle join)肯定不合适,只能做map join。
但是reduce join只适合做小表和大表的join,如何做大表间的join呢?
此时可以对两张大表的连接字段分桶,此时的join是按照桶来的,一个桶一个桶join,这样就完美解决了。
不过两个表的分桶数量上必须是倍数关系。确保对于连接条件的一致性。
解释:
如果连接字段某一个值的hashcode为8,A表分4桶,B表分5桶,则该值在A表进入0号桶,在B表进入3号桶,此时join的连接条件就不一致了。
要想在map端执行桶join,必须设置hive.optimize.bucketmapjoin= true。
C)抽样查询
传统抽样:
select * from emp tablesample(10%);
分桶抽样:
select * from emp tablesample(bucket x out of y);
解释:
x:从x桶开始抽样查询
y:抽样步长,必须是桶数的因子或者倍数。
假设桶为n,则抽取的数据n/y个桶;