霍普菲尔德网络

Hopfield神经网络(HNN)是一种模拟人类记忆的循环神经网络,应用于机器学习、模式识别等领域。网络结构包括反馈连接,状态随时间变化最终达到稳定或周期性振荡。学习规则中最常见的是Hebb学习法则,而模式识别通过更新过程恢复已学习的模式。
摘要由CSDN通过智能技术生成

Hopfield Neural Network (HNN) is a neural network with cyclic and recursive characteristics, combined with storage and binary systems. Invented by John Hopfield in 1982. For a Hopfield neural network, the key is to determine its weight under stable conditions . Hopfield neural networks are divided into discrete and continuous types. The main difference lies in the activation function.

Hopfield神经网络(HNN)是具有循环和递归特征的神经网络,结合了存储和二进制系统。 由John Hopfield于1982年发明。对于Hopfield神经网络, 关键是要在稳定的条件下确定其重量 。 Hopfield神经网络分为离散类型和连续类型。 主要区别在于激活功能。

The Hopfield Neural Network (HNN) provides a model that simulates human memory. It has a wide range of applications in artificial intelligence, such as machine learning, associative memory, pattern recognition, optimized calculation, VLSI and parallel realization of optical devices.

Hopfield神经网络(HNN)提供了一个模拟人类记忆的模型。 它在人工智能中具有广泛的应用,例如机器学习,关联存储器,模式识别,优化计算,VLSI和光学设备的并行实现。

网络结构 (Network Structure)

The HopField network is a cyclic neural network with feedback connections from output to input. After the signal is input, the state of the neuron will continue to change over time, and finally converge or periodically oscillate.

HopField网络是一个循环神经网络,具有从输出到输入的反馈连接。 输入信号后,神经元的状态将随着时间的推移而不断变化,并最终收敛或周期性地振荡。

Suppose there are a total of N neurons, x_i is the input of the i-th neuron, w_{ij} is the weight between neuron i and j , θ_i is the threshold of the i-th neuron, if the i-th neuron is in the state y(i, t) at time t then we have the following recurrence formula:

假设总共有N个神经元,x_i是第i个神经元的输入,w_ {ij}是神经元i和j之间的权重,θ_i是第i个神经元的阈值(如果第i个神经元)在时间t处于y(i,t)状态,那么我们有以下递推公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值