windSeS
码龄8年
  • 796,027
    被访问
  • 128
    原创
  • 2,934
    排名
  • 1,524
    粉丝
关注
提问 私信

个人简介:昔风不起,唯有努力生存!

  • 目前就职: 之江实验室
  • 加入CSDN时间: 2014-01-13
博客简介:

昔风不起,唯有努力生存!

博客描述:
自主移动机器人、强化学习、示教学习、路径规划
查看详细资料
  • 6
    领奖
    总分 2,238 当月 105
个人成就
  • 博客专家认证
  • 获得1,049次点赞
  • 内容获得527次评论
  • 获得5,109次收藏
创作历程
  • 5篇
    2022年
  • 35篇
    2021年
  • 27篇
    2020年
  • 41篇
    2019年
  • 24篇
    2018年
  • 6篇
    2017年
成就勋章
TA的专栏
  • 自主移动机器人导航入门
    付费
    2篇
  • 机器人自主增量式学习
    6篇
  • 无人驾驶技术系统
    15篇
  • PaperReading
    11篇
  • 人在回路的机器学习
    2篇
  • 轻笔记
    19篇
  • 读书笔记
    2篇
  • 影评/生活杂感
    1篇
  • 机器学习
    22篇
  • 机器人技术
    7篇
  • coding
    26篇
  • ros
    7篇
  • ubuntu
    16篇
  • 附加知识库
    8篇
  • debug
    19篇
  • 办公软件安装
    4篇
兴趣领域 设置
  • 人工智能
    机器学习神经网络tensorflowpytorch
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

OpenCV (c++)使用KDTree时,得到正确结果后报Segmentation fault (core dumped)

一、给出问题构建包含以下文件的工程(opencv_test)各文件内容给出如下:# CMakeLists.txtcmake_minimum_required(VERSION 2.18)project(opencv_test)find_package(OpenCV REQUIRED)include_directories(${OpenCV_INCLUDE_DIRS})add_executable(${PROJECT_NAME} main.cpp
原创
发布博客 11 小时前 ·
7 阅读 ·
0 点赞 ·
0 评论

Frenet坐标系与Cartesian坐标系互转(三):应用示例

已知一个U-turn道路中心线的参数化曲线如下所示:{x(s)=−1.205e−05s5+0.0004733s4−0.0008037s3−0.09783s2−0.002081s+5y(s)=−5.383e−19s5+0.000294s4−0.009237s3+0.009687s2+0.9875s+0.0007563\left\{\begin{matrix}x(s)=&-1.205e-05 s^5 + 0.0004733 s^4 - 0.0008037 s^3 - 0.09783 s^2 - 0.0
原创
发布博客 2022.05.19 ·
127 阅读 ·
1 点赞 ·
3 评论

Frenet坐标系与Cartesian坐标系互转(二):Python代码函数实现

1D [x,y]→[s,d][x, y]\rightarrow[s, d][x,y]→[s,d]import numpy as npfrom math import *def cartesian_to_frenet1D(rs, rx, ry, rtheta, x, y): s_condition = np.zeros(1) d_condition = np.zeros(1) dx = x - rx dy = y - ry cos_theta_
原创
发布博客 2022.05.19 ·
189 阅读 ·
1 点赞 ·
0 评论

[轻笔记]蛙跳积分法

知乎上JimKarrey关于蛙跳积分法的介绍潜显易懂。现简单记录如下:已知:积分的起点是ttt时刻的坐标x(t)x(t)x(t),t−12δtt-\frac{1}{2}\delta tt−21​δt时刻的速度v(t−12δt)v(t-\frac{1}{2}\delta t)v(t−21​δt),t−δtt-\delta tt−δt时刻的加速度a(t−δt)a(t-\delta t)a(t−δt)。step1:计算出x(t)x(t)x(t)处的受力,得到ttt时刻的加速度a(t)a(t)a(t),完
原创
发布博客 2022.04.02 ·
257 阅读 ·
0 点赞 ·
0 评论

神经常微分方程——理解篇

1 常微分方程常微分方程只包含单个自变量ttt,未知函数y(t)y(t)y(t)和未知函数的导数y′(t)y'(t)y′(t)的等式,例如:y′(t)=2ty'(t)=2ty′(t)=2t。可以写成如下通用的形式:y(0)=y0;dydt(t)=fθ(t,y(t))(1)y(0)=y_{0}; \frac{dy}{dt}(t)=f_{\theta}(t, y(t)) \tag{1}y(0)=y0​;dtdy​(t)=fθ​(t,y(t))(1)其中,fθ(t,y(t))f_{\theta}(t, y(
原创
发布博客 2022.03.16 ·
370 阅读 ·
0 点赞 ·
0 评论

[轻笔记]Juliav0.6配置jupyter

想用NGSIM数据做一些研究,参照LongshengJiang/NGSIM-tools配置Julia v6.0.2与NGSIM环境。想用jupyter来交互式编写julia,发现出现错误,现将错误与解决方法记录如下。错误:在终端执行juliajulia>Pkg.add("IJulia")在google上搜了一下,还真有和我一样遇到这个问题,问题链接:LoadError: Failed to find or install Jupyter 3.0 or later. #885。人家解决.
原创
发布博客 2021.12.30 ·
427 阅读 ·
0 点赞 ·
0 评论

[轻笔记]多个第三方库typedef重定义冲突

问题描述工程依赖opencv与课题组项目的一个库,编译时出现以下错误:大概意思是,两个库里都用typedef定义了int64,发生冲突。无解之下请教了课题组的c++小王子——建哥。不一会,建哥发我一个链接:Typedef redefinition (C2371) for uint32 in two 3rd-party libraries。问题本质是一样的。所以,照猫画虎,在冲突的库头文件前后分别加下如下内容,问题就解决了。编译通过!...
原创
发布博客 2021.12.02 ·
729 阅读 ·
0 点赞 ·
1 评论

[轻笔记]CMakeLists指定opencv路径

安装opencv到指定位置git clone https://github.com/opencv/opencv.gitcd opencvmkdir buildcd buildcmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=指定的安装位置 ..make 或 make -j7make install # optional在CMakeList文件中指定刚才安装的opencvcmake_minimum_required(VER
原创
发布博客 2021.12.01 ·
458 阅读 ·
0 点赞 ·
0 评论

[轻笔记]matplotlib获取颜色名称列表

import matplotlibimport matplotlib.pyplot as plt%matplotlib inlinec_buf = list(matplotlib.colors.cnames.keys()) # this line class Cluster: def __init__(self, first_member): self.members = [first_member] self.size = 1 self.we
原创
发布博客 2021.10.22 ·
102 阅读 ·
0 点赞 ·
0 评论

定位(二):无迹卡尔曼滤波

上一篇介绍了卡尔曼滤波,以及用于非线性系统的扩展卡尔滤波。扩展卡尔曼滤波通过一阶泰勒展开得到近似的线性状态转移矩阵与观测矩阵。本篇介绍另一种可用于非线性系统的卡尔曼滤波改进版本——无迹卡尔曼滤波。一、无迹卡尔曼滤波原理1.1 扩展卡尔曼滤波的问题为了说明扩展卡尔曼滤波的问题,先假设一个服从一维正态分布的随机变量X∼N(μ,σ2)X \sim N(\mu, \sigma^2)X∼N(μ,σ2),Y=sin⁡(X)Y=\sin(X)Y=sin(X)是随机变量XXX的正弦函数的分布,随机变量YYY的期望.
原创
发布博客 2021.09.27 ·
373 阅读 ·
0 点赞 ·
0 评论

定位(一):扩展卡尔曼滤波

移动机器人导航需要解决三个问题:1)我在哪儿?2)Filter designIn this simulation, the robot has a state vector includes 4 states at time ttt.xt=[xt,yt,ϕt,vt]\textbf{x}_t=[x_t, y_t, \phi_t, v_t]xt​=[xt​,yt​,ϕt​,vt​]x, y are a 2D x-y position, ϕ\phiϕ is orientation, and v is .
原创
发布博客 2021.09.13 ·
1777 阅读 ·
4 点赞 ·
0 评论

[轻笔记]贝塞尔曲线与速度的一点关系

一、任意阶贝塞尔曲线通用程序这一个简单的函数通将任意阶的贝塞尔曲线上的点给求出来,并且能给出每个点的一阶导与二阶导。从而能得到每个点的曲率。先给出贝塞尔曲线的通式:假设有P0,P1,...,PnP_0, P_1,..., P_nP0​,P1​,...,Pn​ 等 $n+1 个控制点,我们要利用这个控制点,我们要利用这个控制点,我们要利用这n+1个控制点得到个控制点得到个控制点得到 n$阶的贝塞尔曲线。有通式如下:我们从中能看到明显的递归结构,同样的一阶导与二阶导都能得到递归形式。从而能简单的用
原创
发布博客 2021.07.16 ·
693 阅读 ·
1 点赞 ·
4 评论

[轻笔记]python __init__.py工程维护,调用不同文件夹下py

CSDN博客:python模块中__init__.py的作用CSDN博客:python py文件如何调用不同文件夹下的py文件结论:init.py的作用是让一个呈结构化分布(以文件夹形式组织)的代码文件夹变成可以被导入import的软件包。调用不同文件夹下的py文件需要用到sys.path.append(path)命令。例子testpy/B/run.py写如下代码import syssys.path.append('..')import Aprint("import A")i.
原创
发布博客 2021.06.24 ·
107 阅读 ·
0 点赞 ·
0 评论

[轻笔记]巧用特殊字符在word中画“线”和“箭头”(转帖)

1、输入三个“=”后回车就有了二条细直线,不管页面如何设置,它始终填充整行;2、输入三个“_”(下划线)后回车就有了一条粗直线,不管页面如何设置,它始终填充整行;3、输入三个“*”后回车就有了一条虚线,不管页面如何设置,它始终填充整行;4、输入三个“#”后回车就有了三条直线,中间是粗线,不管页面如何设置,它始终填充整行;5、输入三个“-”(减号)后回车就有了一条细直线,不管页面如何设置,它始终填充整行;6、输入三个“~”后回车就有了一条波浪线,不管页面如何设置,它始终填充整行;7、输入二个“-”
原创
发布博客 2021.06.18 ·
71 阅读 ·
0 点赞 ·
0 评论

基于Segment Tree实现Prioritized Experience Replay

本博客主要针对tianshou(一个基于pytorch的强化学习开源平台)里的Prioritized Experience Replay进行说明,以备不时复查。一、Prioritized Experience Replay简介原始的TD类强化学习方法(例如,Q学习)更新完参数立刻扔掉刚获得的经验,这样会造成两个问题:前后用于学习的经验存在强相关性,未能保存样本的独立同分布条件,容易造成算法不稳定或者发散;放弃了一些在未来有用的需要重新学习的一些稀有经验。1992年Experience Re.
原创
发布博客 2021.06.17 ·
170 阅读 ·
3 点赞 ·
1 评论

[轻笔记]anaconda历史版本下载地址

anaconda历史版本安装:anaconda所有版本链接:https://repo.continuum.io/archive/清华大学开源软件镜像站:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
原创
发布博客 2021.06.03 ·
255 阅读 ·
0 点赞 ·
1 评论

预测算法:具身智能如何应对不确定性[Reviews of Daniel Williams]

这是一篇翻译文章,本人把它当作第一遍阅读《预测算法:具身智能如何应对不确定性》的一个总结。原文下载链接:Review of surfing uncertainty: prediction, action, and the embodied mind, by Andy Clark, Oxford University Press, 2016在 1940 年代,剑桥心理学家和哲学家 Kenneth Craik 假设生物体使用它们的神经系统来构建和操纵世界的内部模型,其主要功能是预测:“如果有机体在其.
翻译
发布博客 2021.05.31 ·
515 阅读 ·
0 点赞 ·
3 评论

EigenGame:将主成份分析(PCA)作为一个博弈游戏

EigenGame由两部分组成,“Eigen”意为特征,也是主成份分析(PCA)方法的核心。而"Game"则意为博弈论,是一种研究理性决策者之间的冲突与合作的数学模型。与本篇博客要介绍的EigenGame相关的论文主要有发表于ICLR2021的《EIGENGAME: PCA AS A NASH EQUILIBRIUM》与arXiv.org上公开预发表的《EigenGame Unloaded When playing games is better than optimizing》。这两篇论文的作者相同。.
原创
发布博客 2021.05.27 ·
250 阅读 ·
0 点赞 ·
1 评论

MLP-Mixer [代码实现(基于MNIST)]

本文基于lucidrains在gitHub上开源的mlp-mixer-pytorch实现mlp-mixer在MNIST数据上的demo。MLP-Mixer: An all-MLP Architecture for Vision[PDF]MLP-Mixer简介和一些想法 [CSDN博客]新坑来了!谷歌提出MLP-Mixer:一种用于视觉的全MLP架构[CSDN博客]lucidrains/mlp-mixer-pytorch [pytorch 实现]lucidrains/mlp-mixer-py.
原创
发布博客 2021.05.24 ·
1145 阅读 ·
1 点赞 ·
4 评论

[轻笔记]Successor Features for Reinforcement learning

Successor Features for Transfer in Reinforcement Learning | NeurIPS 2017 [PDF]Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement | ICML 2018[PDF]深入理解:迁移强化学习之Successor Representation | 短乎文章...
原创
发布博客 2021.05.14 ·
106 阅读 ·
0 点赞 ·
0 评论
加载更多