在LLVM中的greedy Register Allocation pass代码详解

LLVM贪婪寄存器分配器处理流程详解

LLVM 贪婪寄存器分配器(RAGreedy)详细处理流程

日期: 2025年5月29日

摘要

本文深入分析 LLVM 贪婪寄存器分配器(RAGreedy)的处理流程,详细描述从优先级队列获取虚拟寄存器、分配物理寄存器、处理分配失败的每一步逻辑。特别聚焦于驱逐、分割、溢出、重新着色和 CSR 处理的细粒度实现细节,包括数据结构交互、条件判断和优化策略。文档适合编译器开发者深入理解 RAGreedy 的内部机制。

目录

概述

RAGreedy 是 LLVM 代码生成流水线中的核心寄存器分配器,采用贪婪策略为虚拟寄存器分配物理寄存器,目标是最小化内存溢出并优化性能。其核心逻辑在 allocatePhysRegs 函数中,通过优先级队列(PriorityQueue)管理虚拟寄存器,并调用 selectOrSplit 分配物理寄存器。分配失败时,RAGreedy 使用驱逐、分割、溢出、重新着色和 CSR 处理等策略解决问题。本文将深入每个子步骤的处理逻辑,结合伪代码和数据结构交互细节。

处理流程

以下是 RAGreedy 的详细处理流程,分为五个主要阶段

1. 获取虚拟寄存器

RAGreedy 使用优先级队列管理虚拟寄存器(VirtReg),确保高优先级的寄存器优先分配。

1.1 优先级计算逻辑

优先级由 DefaultPriorityAdvisor::getPriority 计算,基于以下因素:

  • 活跃区间大小:通过 LiveIntervals 计算 VirtReg 的活跃区间长度(LiveInterval::getSize)。较大的区间优先级更高,因为溢出成本高。
  • 寄存器类优先级TargetRegisterInfo 定义寄存器类(如 GPRFPR)的优先级。例如,通用寄存器通常优先于专用寄存器。
  • 全局 vs 局部:全局区间(跨多个基本块,LiveInterval::isCrossBB)优先于局部区间(单基本块)。
  • 分配提示:通过 getHints() 获取提示寄存器(如拷贝指令 r1 = COPY r2 提示 r1r2 使用同一寄存器),提示寄存器优先级更高。
  • 分配阶段VirtReg 的阶段(RS_AssignRS_SplitRS_Spill)影响优先级。例如,RS_Assign(初始分配)优先于 RS_Split(分割后)。

逻辑

  • 计算权重:Weight = Size * Frequency + HintBonus,其中 Frequency 是基本块执行频率(MachineBlockFrequencyInfo),HintBonus 是提示奖励。
  • 比较权重:getPriority 返回比较值,优先级队列按降序排序。
  • 命令行选项:
    • GreedyRegClassPriorityTrumpsGlobalness:优先寄存器类而非全局性。
    • GreedyReverseLocalAssignment:优先短局部区间。

伪代码

float getPriority(VirtReg) {
  LiveInterval &LI = LIS->getInterval(VirtReg);
  float Size = LI.getSize();
  float Freq = MBFI->getBlockFreq(LI.getParentBB());
  float HintBonus = hasHint(VirtReg) ? HINT_WEIGHT : 0;
  float Weight = Size * Freq + HintBonus;
  if (GreedyRegClassPriorityTrumpsGlobalness)
    Weight += RegClassPriority(LI.getRegClass());
  if (GreedyReverseLocalAssignment && !LI.isCrossBB())
    Weight = 1.0 / Weight; // 短区间优先
  return Weight;
}
1.2 队列操作

逻辑

  • 初始化:在 allocatePhysRegs 中,遍历所有虚拟寄存器,调用 enqueue 加入队列:
    for (VirtReg in VirtRegMap) {
      Queue.enqueue(VirtReg, getPriority(VirtReg));
    }
    
  • 获取:循环调用 dequeue 获取最高优先级的 VirtReg
    while (Queue.hasReady()) {
      VirtReg = Queue.dequeue();
      selectOrSplit(VirtReg, NewVRegs);
    }
    
  • 动态更新:新生成的虚拟寄存器(NewVRegs)通过 enqueue 重新加入队列。

数据结构

  • PriorityQueue:基于堆的优先级队列,维护 VirtReg 和优先级。
  • LiveIntervals:存储活跃区间信息。
  • MachineBlockFrequencyInfo:提供基本块频率。

结果:获取优先级最高的 VirtReg,传递给 selectOrSplit

2. 分配物理寄存器

selectOrSplit 调用 selectOrSplitImplVirtReg 分配物理寄存器,返回 PhysReg~0u

2.1 分配尝试逻辑

tryAssign 尝试分配物理寄存器,基于寄存器类和提示。

步骤

  1. 初始化分配顺序
    • 使用 AllocationOrder 生成物理寄存器列表:
      AllocationOrder Order(VirtReg, RegClass, TRI, Hints);
      
    • 顺序基于:
      • 寄存器类约束(RegClass)。
      • 提示寄存器(Hints)。
      • 架构偏好(TargetRegisterInfo::getAllocatableSet)。
    • 命令行选项 SplitThresholdForRegWithHint 决定是否优先提示。
  2. 遍历物理寄存器
    • 调用 Order.next() 获取下一个 PhysReg
  3. 冲突与分配
    • 调用 tryAssign 检查 PhysReg 是否可用。

伪代码

unsigned tryAssign(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<unsigned> &NewVRegs) {
  while (unsigned PhysReg = Order.next()) {
    // 分配逻辑(见下文)
  }
  return ~0u;
}
2.2 冲突检测与成本评估

逻辑

  • 冲突检测
    • 调用 LiveRegMatrix::checkInterference(VirtReg, PhysReg)
      InterferenceKind IK = Matrix->checkInterference(VirtReg, PhysReg);
      
    • 返回值:
      • IK_FreePhysReg 空闲。
      • IK_VirtReg:被其他虚拟寄存器占用。
      • IK_PhysReg:被固定物理寄存器占用。
  • 成本评估
    • 计算 PhysReg 成本(RegCosts):
      float Cost = calculateRegCost(PhysReg, VirtReg);
      
    • 成本因素:
      • 提示匹配:isHint(VirtReg, PhysReg) 降低成本。
      • CSR 开销:CSRCost(由 CSRFirstTimeCost 设置)。
      • 别名成本:TargetRegisterInfo::getAliasCost
    • 判断:
      • Cost <= CostPerUseLimit,接受 PhysReg
      • 否则,尝试驱逐。
  • 分配
    • IK_Free 且成本可接受:
      Matrix->assign(VirtReg, PhysReg);
      VRM->assignVirt2Phys(VirtReg, PhysReg);
      return PhysReg;
      
    • IK_VirtReg,调用 tryEvict

伪代码

unsigned tryAssign(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<unsigned> &NewVRegs) {
  while (unsigned PhysReg = Order.next()) {
    InterferenceKind IK = Matrix->checkInterference(VirtReg, PhysReg);
    if (IK == IK_Free) {
      if (isHint(VirtReg, PhysReg) || calculateRegCost(PhysReg) <= CostPerUseLimit) {
        Matrix->assign(VirtReg, PhysReg);
        VRM->assignVirt2Phys(VirtReg, PhysReg);
        return PhysReg;
      }
    } else if (IK == IK_VirtReg) {
      if (tryEvict(VirtReg, PhysReg, NewVRegs))
        return PhysReg;
    }
  }
  if (!isHintAssigned(VirtReg))
    SetOfBrokenHints.insert(VirtReg);
  return ~0u;
}

数据结构

  • LiveRegMatrix:管理干扰关系。
  • VirtRegMap:记录虚拟到物理寄存器的映射。
  • InterferenceCache:加速冲突检测。

结果

  • 成功:返回 PhysReg,更新状态。
  • 失败:进入失败处理。

3. 处理分配失败

分配失败时,RAGreedy 按以下顺序尝试策略:

3.1 驱逐干扰

tryEvict 释放被占用的 PhysReg

3.1.1 干扰识别

逻辑

  • 使用 LiveRegMatrix 获取干扰寄存器:
    SmallVector<LiveInterval*, 8> Intfs;
    Matrix->getInterferences(VirtReg, PhysReg, Intfs);
    
3.1.2 驱逐候选选择

逻辑

  • 调用 EvictAdvisor::canEvictInterference
    bool canEvict = EvictAdvisor->canEvictInterference(VirtReg, PhysReg);
    
  • 条件:
    • 干扰寄存器可重新分配(canReassign)。
    • 驱逐成本低于 CostPerUseLimit
      float EvictCost = calculateEvictCost(Intfs);
      if (EvictCost > CostPerUseLimit) return false;
      
  • 优先选择低权重寄存器(LiveInterval::getWeight)。
3.1.3 驱逐执行

逻辑

  • 调用 evictInterference
    void evictInterference(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl<unsigned> &NewVRegs) {
      for (LiveInterval *Intf : Intfs) {
        Matrix->unassign(Intf);
        VRM->clearVirt(Intf->reg);
        NewVRegs.push_back(Intf->reg);
      }
      ++NumEvictions;
    }
    
  • 使用级联号防止循环驱逐:
    VirtReg.Cascade++;
    

伪代码

bool tryEvict(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl<unsigned> &NewVRegs) {
  SmallVector<LiveInterval*, 8> Intfs;
  Matrix->getInterferences(VirtReg, PhysReg, Intfs);
  if (!EvictAdvisor->canEvictInterference(VirtReg, PhysReg, Intfs))
    return false;
  for (LiveInterval *Intf : Intfs) {
    Matrix->unassign(Intf);
    VRM->clearVirt(Intf->reg);
    NewVRegs.push_back(Intf->reg);
  }
  VirtReg.Cascade++;
  ++NumEvictions;
  return true;
}

结果

  • 成功:返回 PhysReg
  • 失败:尝试分割。
3.2 分割活跃区间

trySplit 分割 VirtReg 的活跃区间,生成子区间。

3.2.1 局部分割

逻辑

  • 适用:单基本块内的活跃区间。
  • 计算间隙权重(calcGapWeights):
    SmallVector<float, 16> GapWeights;
    calcGapWeights(VirtReg, GapWeights);
    
  • 选择最低成本的间隙:
    unsigned BestGap = findMinWeightGap(GapWeights);
    
  • 分割:
    LiveInterval *NewLI = splitLiveInterval(VirtReg, BestGap);
    NewVRegs.push_back(NewLI->reg);
    
3.2.2 区域分割

逻辑

  • 适用:跨块的全局区间。
  • 使用 SpillPlacement 分析活跃性:
    SpillPlacement->analyze(VirtReg);
    
  • 计算分割成本(calculateRegionSplitCost):
    float SplitCost = calculateRegionSplitCost(VirtReg, ColdRegions);
    if (SplitCost >= SpillCost) return false;
    
  • 在冷区域分割:
    LiveInterval *NewLI = doRegionSplit(VirtReg, ColdRegions);
    NewVRegs.push_back(NewLI->reg);
    
3.2.3 块级分割

逻辑

  • 隔离到每个基本块:
    SmallVector<LiveInterval*, 4> NewLIs;
    splitLiveIntervalPerBlock(VirtReg, NewLIs);
    for (LiveInterval *LI : NewLIs)
      NewVRegs.push_back(LI->reg);
    
3.2.4 指令级分割

逻辑

  • 围绕指令分割,优化受限寄存器类:
    LiveInterval *NewLI = splitAroundInstruction(VirtReg, Instr);
    NewVRegs.push_back(NewLI->reg);
    

综合逻辑

  • 按顺序尝试分割类型:
    unsigned trySplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<unsigned> &NewVRegs) {
      if (tryLocalSplit(VirtReg, Order, NewVRegs)) return 0;
      if (tryRegionSplit(VirtReg, Order, NewVRegs)) return 0;
      if (tryBlockSplit(VirtReg, Order, NewVRegs)) return 0;
      if (tryInstructionSplit(VirtReg, Order, NewVRegs)) return 0;
      return ~0u;
    }
    
  • 控制复杂性:GrowRegionComplexityBudget 限制子区间数量。

结果

  • 成功:新寄存器加入 NewVRegs
  • 失败:尝试溢出。
3.3 溢出

spillVirtReg 溢出到内存。

3.3.1 溢出条件

逻辑

  • 检查是否可溢出:
    if (!VirtReg.isSpillable()) return ~0u;
    
3.3.2 延迟溢出

逻辑

  • 若启用 EnableDeferredSpilling
    VirtReg.Stage = RS_Memory;
    return 0;
    
3.3.3 溢出执行

逻辑

  • 使用 SpillerInstance
    SpillerInstance->spill(&VirtReg, NewVRegs);
    
  • 生成加载/存储指令,更新 LiveIntervalsLiveDebugVariables
  • 标记 RS_Done

伪代码

unsigned spill(LiveInterval &VirtReg, SmallVectorImpl<unsigned> &NewVRegs) {
  if (!VirtReg.isSpillable()) return ~0u;
  if (EnableDeferredSpilling) {
    VirtReg.Stage = RS_Memory;
    return 0;
  }
  SpillerInstance->spill(&VirtReg, NewVRegs);
  VirtReg.Stage = RS_Done;
  ++NumSpills;
  return 0;
}

结果

  • 成功:新寄存器加入队列。
  • 失败:尝试重新着色。
3.4 最后机会重新着色

tryLastChanceRecoloring 重新分配干扰寄存器。

3.4.1 递归搜索

逻辑

  • 调用 tryRecoloringCandidates
    bool tryRecoloringCandidates(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<unsigned> &NewVRegs);
    
  • 递归尝试为干扰寄存器分配新 PhysReg
3.4.2 限制条件

逻辑

  • 最大深度:LastChanceRecoloringMaxDepth
  • 最大干扰数量:LastChanceRecoloringMaxInterference
  • ExhaustiveSearch,禁用限制。
3.4.3 状态管理

逻辑

  • FixedRegisters:防止重复着色。
  • RecolorStack:记录状态,支持回滚。

伪代码

unsigned tryLastChanceRecoloring(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<unsigned> &NewVRegs) {
  if (RecolorStack.size() >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch)
    return ~0u;
  RecolorStack.push(VirtReg);
  if (tryRecoloringCandidates(VirtReg, Order, NewVRegs)) {
    PhysReg = Order.getLast();
    Matrix->assign(VirtReg, PhysReg);
    VRM->assignVirt2Phys(VirtReg, PhysReg);
    RecolorStack.pop();
    return PhysReg;
  }
  RecolorStack.pop();
  return ~0u;
}

结果

  • 成功:返回 PhysReg
  • 失败:触发错误。
3.5 CSR 处理

tryAssignCSRFirstTime 使用未用的 CSR。

3.5.1 成本比较

逻辑

  • 计算 CSR 成本:
    float CSRCost = getCSRCost(VirtReg);
    
  • 比较:
    if (CSRCost >= SpillCost || CSRCost >= SplitCost) return ~0u;
    
3.5.2 CSR 分配

逻辑

  • 分配 CSR:
    PhysReg = Order.getCSR();
    Matrix->assign(VirtReg, PhysReg);
    VRM->assignVirt2Phys(VirtReg, PhysReg);
    CostPerUseLimit = 1; // 限制后续驱逐
    

伪代码

unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl<unsigned> &NewVRegs) {
  float CSRCost = getCSRCost(VirtReg);
  if (CSRCost < SpillCost && CSRCost < SplitCost) {
    unsigned PhysReg = Order.getCSR();
    Matrix->assign(VirtReg, PhysReg);
    VRM->assignVirt2Phys(VirtReg, PhysReg);
    CostPerUseLimit = 1;
    return PhysReg;
  }
  return ~0u;
}

4. 提示优化

tryHintsRecoloring 修复未分配到提示寄存器的 VirtReg

4.1 拷贝分析

逻辑

  • 遍历 SetOfBrokenHints
    for (unsigned VirtReg : SetOfBrokenHints) {
      collectHintInfo(VirtReg, Copies);
    }
    
  • 收集拷贝指令(如 r1 = COPY r2)。
4.2 重新着色优化

逻辑

  • 计算成本:
    float Cost = getBrokenHintFreq(Copies);
    
  • 若重新着色降低成本:
    tryHintRecoloring(VirtReg);
    

伪代码

void tryHintsRecoloring() {
  for (unsigned VirtReg : SetOfBrokenHints) {
    SmallVector<MachineInstr*, 8> Copies;
    collectHintInfo(VirtReg, Copies);
    if (getBrokenHintFreq(Copies) > 0) {
      tryHintRecoloring(VirtReg);
      ++NumHintRecolorings;
    }
  }
}

5. 后处理与统计

5.1 后处理

逻辑

  • 删除冗余拷贝:
    removeRedundantCopies();
    
  • 处理溢出/重载指令。
  • 更新调试信息:
    LiveDebugVariables->update();
    
5.2 统计报告

逻辑

  • 记录统计:
    ++NumSpills; ++NumReloads; ++NumCopies;
    
  • 生成报告:
    MachineOptimizationRemarkMissed Report;
    Report.addStatistic("Spills", NumSpills);
    
5.3 资源释放

逻辑

  • 释放临时数据:
    SpillerInstance.reset();
    GlobalCand.clear();
    

总结

RAGreedy 通过优先级队列驱动的贪婪分配,结合细粒度的驱逐、分割、溢出和重新着色策略,实现高效寄存器分配。

原创作者: hsyluxiaoguo 转载于: https://www.cnblogs.com/hsyluxiaoguo/p/18902335
【源码免费下载链接】:https://renmaiwang.cn/s/6qkmj 在Android平台上,开发人员通常需要确保其Android应用在后台长时间运行以完成关键任务如音乐播放、位置追踪或后台服务。"android app不被杀掉的技术"涉及一系列策略和方法旨在提升应用存活率并在系统资源紧张时保持运行状态。以下是一些核心知识点及其实现细节:1. **服务(Services)**:Android中的服务是独立于用户界面的组件在后台运行以执行特定任务通过启动指定服务可以确保应用长时间处理相关操作例如使用startService()方法或IntentService提供的单线程模型来管理请求2. ** foreground Services**:这是一种特殊的服务类型当需要在用户界面之外保持服务长时间运行时可采用它通过调用startForeground()方法并提供通知可以让系统更倾向于保留该服务从而减少其被杀死的可能性3. **JobScheduler/WorkManager**:Android提供了调度器如JobScheduler(API 21及以上)和WorkManager(API 14及以上)它们允许开发者安排在特定条件下运行的任务这些任务会在设备空闲时自动执行即使应用已关闭也能正常运行4. **后台进程优先级管理**:根据应用状态(如前台可见或后台)Android系统会分配不同的进程优先级提升应用的进程优先级有助于降低其被回收的可能性例如通过设置android:process属性在一个进程中运行多个组件可以共享资源从而减少被清除的风险5. **BroadcastReceiver**:注册广播接收器可以让应用监听特定事件如网络状态变化以在必要时唤醒相关服务然而应尽量避免不必要的唤醒因为这可能影响电池续航6. **电源管理优化**:深入了解Android的电源管理策
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值