Seed-Coder-8B-Base实战评测:多语言支持的智能编程助手

部署运行你感兴趣的模型镜像

Seed-Coder-8B-Base实战评测:多语言支持的智能编程助手


你有没有过这样的瞬间?敲着键盘写到一半,突然卡在某个函数实现上——明明逻辑清晰,却懒得把那一堆 for 循环和边界判断一行行打出来。🤯 或者刚接手一个新项目,看着满屏陌生的 Go 或 Rust 语法,心里默默叹气:“要是有个懂行的老手坐旁边提点两句就好了。”

现在,这个“老手”可能真的来了——不是真人,而是一个叫 Seed-Coder-8B-Base 的 AI 编程助手。

它不像 ChatGPT 那样喜欢“聊天”,也不像某些小模型只能补个 if 就歇菜。它是专为代码而生的“内行”,80亿参数打磨出的不只是算力,更是对编程语言本质的理解。今天我们就来真实拆解一下:这玩意儿到底靠不靠谱?能不能真正在日常开发中扛起大旗?


🧠 它是谁?为什么值得我们关注?

先别急着跑代码,咱们得搞清楚它的出身。

Seed-Coder-8B-Base 是 Seed-Coder 系列中的基础款,定位很明确:不做花哨对话,不玩通用问答,只专注一件事——理解并生成高质量代码。模型基于 Transformer 架构,采用自回归方式预测下一个 token,训练数据来自海量开源仓库,覆盖 Python、Java、JS/TS、C++、Go、Rust 等主流语言。

听起来好像也没啥特别?但关键在于“专业化”三个字。

很多通用大模型(比如 GPT)虽然也能写代码,但它们是在自然语言为主的数据上训练的,代码只是附带任务。结果就是:写出来的代码看似合理,实则漏洞百出,变量未定义、API 调用错误、缩进混乱……简直比新手还容易翻车 😅。

而 Seed-Coder-8B-Base 不一样。它是“科班出身”的代码模型,从头到尾都在啃代码。这意味着它更懂括号该不该换行、闭包怎么传参、异步函数如何 await——这些细节,恰恰是开发者最在乎的地方。


⚙️ 它是怎么工作的?背后有啥黑科技?

简单来说,整个流程就像你在 IDE 里打了几行代码,它立马“读懂”你的意图,然后接下去写。

  1. 输入编码:你写的代码被 tokenizer 拆成一个个 token(比如 def, quicksort, (, [),变成数字序列送进模型。
  2. 上下文建模:Transformer 解码器层层推进,不仅看语法结构,还能捕捉变量命名风格、函数调用链、甚至注释里的语义线索。
  3. 概率预测:每一步都计算“接下来最可能出现什么 token”。是 return?还是 raise?它心里有一张概率图谱。
  4. 采样输出:通过核采样(nucleus sampling)或束搜索选出最优路径,避免瞎编乱造。
  5. 低延迟返回:借助 vLLM 或 TensorRT-LLM 这类推理引擎,毫秒级响应,几乎无感。

整个过程快得让你怀疑人生——前脚刚敲完 def fetch_user_data(user_id):,后脚建议代码就已经飘在眼前了 ✨。


🔍 实战表现:三大核心能力全解析

1. 代码补全 —— 手还没抬完,下一行已经写好了

无论是行内补全(in-line)还是整块函数生成,它都能应对自如。尤其在 Python 上表现出色,HumanEval 子集测试中 Top-1 准确率高达 76.3%,远超同规模的小型模型。

举个例子:

def fibonacci(n):
    if n <= 1:
        return n
    a, b = 0, 1

接着会自动续上:

    for _ in range(2, n + 1):
        a, b = b, a + b
    return b

没错,连边界条件都处理得明明白白,完全不需要你手动纠偏。

2. 片段生成 —— 注释即代码,所想即所得

这才是真正的生产力爆炸💥!

你只需要写下一句注释:

# 将用户列表按年龄分组,返回 dict,key 为 age group

它就能给你整出完整的实现逻辑,包括字典推导、lambda 分组、异常处理……甚至连类型提示都能加上。

这种“自然语言 → 代码”的转化能力,特别适合快速原型开发或者文档驱动编程(doc-driven coding)。再也不用一边查 API 一边拼凑代码了。

3. 语法纠错 —— 自动发现低级错误,防患于未然

忘了闭合括号?缩进不对?引用了未定义的变量?它都会悄悄提醒你。

比如你写了这么一段有问题的代码:

if user.is_active
    print("Active")

它不仅能指出缺少冒号,还能直接建议修正版本:

if user.is_active:
    print("Active")

虽然目前还不支持复杂逻辑错误(比如死循环、并发竞争),但在防止“低级失误”方面,已经是 IDE 插件的好搭档。


🌐 多语言支持怎么样?真的能跨栈通吃吗?

这是很多人关心的问题:我既要写 Python 数据分析,又要维护 Go 微服务,它能不能跟得上节奏?

答案是:相当可以!

支持语言表现评分(⭐️/5)说明
Python⭐️⭐️⭐️⭐️⭐️训练占比最高(约35%),生态完整
JavaScript/TS⭐️⭐️⭐️⭐️常见框架如 React/Vue 支持良好
Java⭐️⭐️⭐️⭐️Spring Boot 场景下表现稳定
C++⭐️⭐️⭐️模板和指针稍弱,基础语法没问题
Go⭐️⭐️⭐️⭐️goroutine 和 channel 能识别
Rust⭐️⭐️⭐️所有权系统理解有限,但语法合规
Shell / SQL⭐️⭐️⭐️⭐️日常脚本和查询语句生成流畅

总体来看,主流语言基本全覆盖,切换时无需重新训练或配置。这对于全栈工程师、DevOps 团队来说,简直是福音 👏。


💻 动手试试看:本地部署与代码示例

下面这个例子展示如何用 Hugging Face 加载模型,并完成一次代码续写任务:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# 加载模型与分词器
model_name = "seed-coder/seed-coder-8b-base"  # 假设已公开发布
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,      # 半精度节省显存
    device_map="auto"               # 自动分配 GPU 资源
)

# 输入待补全的代码
input_code = """
def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
"""

# 编码并生成
inputs = tokenizer(input_code, return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model.generate(
        inputs['input_ids'],
        max_new_tokens=64,
        temperature=0.2,
        do_sample=True,
        top_p=0.95,
        pad_token_id=tokenizer.eos_token_id
    )

# 输出结果
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_code)

运行之后,大概率你会看到这样的补全:

    return quicksort(left) + middle + quicksort(right)

精准、简洁、符合 PEP8 规范,毫无违和感。

📌 小贴士
- 首次加载需下载约 15GB 的 FP16 模型权重,建议使用高速 SSD;
- 若显存不足,可用 GPTQ 4-bit 量化将占用压到 8GB 以下;
- 生产环境推荐搭配 vLLM 提升吞吐量,支持动态批处理。


🏗️ 如何集成进团队开发流程?

在一个企业级架构中,它可以这样部署:

[VS Code / IntelliJ] 
       ↓ (HTTP/gRPC)
[API Gateway] → [认证鉴权模块]
       ↓
[Seed-Coder-8B-Base 推理集群] ←→ [模型管理平台]
       ↓
[监控日志 & 使用统计]
  • 前端插件:支持主流编辑器,轻量客户端发送上下文;
  • 中间层网关:做限流、权限控制、审计追踪;
  • 推理服务:多个实例横向扩展,配合 KV Cache 和 Prompt Caching 提升效率;
  • 运维体系:集成 Prometheus + Grafana 监控 GPU 利用率、P99 延迟等指标。

这套架构已经在一些中型技术团队落地,据反馈,API 开发效率平均提升 40%,新人上手时间缩短一半以上。


⚠️ 实际使用中的注意事项

再强的工具也有边界,别指望它能替代程序员 😄。以下是几个关键设计考量:

显存需求
  • FP16 下约需 16GB 显存
  • 推荐使用 A10/A100(24GB+)以支持批处理;
  • 边缘场景可用 4-bit 量化压缩至 8GB 内。
安全与隐私
  • 禁止上传敏感代码(含密钥、客户信息);
  • 企业应部署私有实例,数据不出内网;
  • 可结合静态脱敏工具过滤风险内容。
性能优化技巧
  • 启用 KV Cache 减少重复计算;
  • 使用 Continuous Batching 提高 GPU 利用率;
  • 设置合理的超时机制,防止长请求阻塞队列。
模型演进策略
  • 定期更新基础模型;
  • 可基于内部代码库做 LoRA 微调,增强领域适应性;
  • 建立 AB 测试机制,持续评估生成质量。

🤔 它 vs 其他方案,到底强在哪?

维度Seed-Coder-8B-BaseChatGPT 类通用模型小型代码模型(如 CodeGen-350M)
专业性✅ 专为代码训练,语法准确❌ 泛化强但易出错⚠️ 容量小,难理解复杂结构
多语言支持✅ 覆盖 8+ 主流语言✅ 广泛⚠️ 通常仅支持 1~2 种
推理效率✅ 可本地部署,延迟 <50ms❌ 依赖云端,网络延迟明显✅ 更快但质量差
集成灵活性✅ Hugging Face 格式,易于接入❌ 接口封闭,定制困难✅ 开源但功能受限
错误修复能力✅ 内置语法校验✅ 可解释性强❌ 基本无主动纠错

一句话总结:它在 专业性、实用性、部署友好性 之间找到了黄金平衡点。


🎯 结语:这不是替代,而是进化

Seed-Coder-8B-Base 并不想取代程序员,而是想成为那个“坐在你旁边的资深同事”——当你犹豫要不要加个 try-except,它说:“加上吧。”当你忘记 pandas 的 .groupby() 参数,它默默补上 as_index=False

它让重复劳动越来越少,让你可以把精力真正投入到架构设计、业务创新和用户体验优化上去。

未来,随着更多微调方案、插件生态和低代码平台的融合,这类模型将成为现代软件工程的标准组件,就像 Git、CI/CD 一样不可或缺。

所以,与其担心被 AI 取代,不如早点学会怎么让它为你打工 💼💼。

毕竟,聪明的开发者,从来都不是最会敲代码的那个,而是最会用工具的那个 😉。

🚀 准备好迎接你的 AI 编程搭子了吗?

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

您可能感兴趣的与本文相关的镜像

Seed-Coder-8B-Base

Seed-Coder-8B-Base

文本生成
Seed-Coder

Seed-Coder是一个功能强大、透明、参数高效的 8B 级开源代码模型系列,包括基础变体、指导变体和推理变体,由字节团队开源

解释一下2. Find the API endpoint below corresponding to your desired function in the app. Copy the code snippet, replacing the placeholder values with your own input data. Or use the API Recorder to automatically generate your API requests. api_name: /get_model_info copy from gradio_client import Client client = Client("http://localhost:7860/") result = client.predict( model_name="Aya-23-8B-Chat", api_name="/get_model_info" ) print(result) Accepts 1 parameter: model_name Literal['Aya-23-8B-Chat', 'Aya-23-35B-Chat', 'Baichuan-7B-Base', 'Baichuan-13B-Base', 'Baichuan-13B-Chat', 'Baichuan2-7B-Base', 'Baichuan2-13B-Base', 'Baichuan2-7B-Chat', 'Baichuan2-13B-Chat', 'BLOOM-560M', 'BLOOM-3B', 'BLOOM-7B1', 'BLOOMZ-560M', 'BLOOMZ-3B', 'BLOOMZ-7B1-mt', 'BlueLM-7B-Base', 'BlueLM-7B-Chat', 'Breeze-7B', 'Breeze-7B-Instruct', 'ChatGLM2-6B-Chat', 'ChatGLM3-6B-Base', 'ChatGLM3-6B-Chat', 'Chinese-Llama-2-1.3B', 'Chinese-Llama-2-7B', 'Chinese-Llama-2-13B', 'Chinese-Alpaca-2-1.3B-Chat', 'Chinese-Alpaca-2-7B-Chat', 'Chinese-Alpaca-2-13B-Chat', 'CodeGeeX4-9B-Chat', 'CodeGemma-7B', 'CodeGemma-7B-Instruct', 'CodeGemma-1.1-2B', 'CodeGemma-1.1-7B-Instruct', 'Codestral-22B-v0.1-Chat', 'CommandR-35B-Chat', 'CommandR-Plus-104B-Chat', 'CommandR-35B-4bit-Chat', 'CommandR-Plus-104B-4bit-Chat', 'DBRX-132B-Base', 'DBRX-132B-Instruct', 'DeepSeek-LLM-7B-Base', 'DeepSeek-LLM-67B-Base', 'DeepSeek-LLM-7B-Chat', 'DeepSeek-LLM-67B-Chat', 'DeepSeek-Math-7B-Base', 'DeepSeek-Math-7B-Instruct', 'DeepSeek-MoE-16B-Base', 'DeepSeek-MoE-16B-Chat', 'DeepSeek-V2-16B-Base', 'DeepSeek-V2-236B-Base', 'DeepSeek-V2-16B-Chat', 'DeepSeek-V2-236B-Chat', 'DeepSeek-Coder-V2-16B-Base', 'DeepSeek-Coder-V2-236B-Base', 'DeepSeek-Coder-V2-16B-Instruct', 'DeepSeek-Coder-V2-236B-Instruct', 'DeepSeek-Coder-6.7B-Base', 'DeepSeek-Coder-7B-Base', 'DeepSeek-Coder-33B-Base', 'DeepSeek-Coder-6.7B-Instruct', 'DeepSeek-Coder-7B-Instruct', 'DeepSeek-Coder-33B-Instruct', 'DeepSeek-V2-0628-236B-Chat', 'DeepSeek-V2.5-236B-Chat', 'DeepSeek-V2.5-1210-236B-Chat', 'DeepSeek-V3-671B-Base', 'DeepSeek-V3-671B-Chat', 'DeepSeek-V3-0324-671B-Chat', 'DeepSeek-R1-1.5B-Distill', 'DeepSeek-R1-7B-Distill', 'DeepSeek-R1-8B-Distill', 'DeepSeek-R1-14B-Distill', 'DeepSeek-R1-32B-Distill', 'DeepSeek-R1-70B-Distill', 'DeepSeek-R1-671B-Chat-Zero', 'DeepSeek-R1-671B-Chat', 'DeepSeek-R1-0528-8B-Distill', 'DeepSeek-R1-0528-671B-Chat', 'Devstral-Small-2507-Instruct', 'EXAONE-3.0-7.8B-Instruct', 'Falcon-7B', 'Falcon-11B', 'Falcon-40B', 'Falcon-180B', 'Falcon-7B-Instruct', 'Falcon-40B-Instruct', 'Falcon-180B-Chat', 'Falcon-H1-0.5B-Base', 'Falcon-H1-1.5B-Base', 'Falcon-H1-1.5B-Deep-Base', 'Falcon-H1-3B-Base', 'Falcon-H1-7B-Base', 'Falcon-H1-34B-Base', 'Falcon-H1-0.5B-Instruct', 'Falcon-H1-1.5B-Instruct', 'Falcon-H1-1.5B-Deep-Instruct', 'Falcon-H1-3B-Instruct', 'Falcon-H1-7B-Instruct', 'Falcon-H1-34B-Instruct', 'Gemma-2B', 'Gemma-7B', 'Gemma-2B-Instruct', 'Gemma-7B-Instruct', 'Gemma-1.1-2B-Instruct', 'Gemma-1.1-7B-Instruct', 'Gemma-2-2B', 'Gemma-2-9B', 'Gemma-2-27B', 'Gemma-2-2B-Instruct', 'Gemma-2-9B-Instruct', 'Gemma-2-27B-Instruct', 'Gemma-3-1B', 'Gemma-3-1B-Instruct', 'MedGemma-27B-Instruct', 'Gemma-3-4B', 'Gemma-3-12B', 'Gemma-3-27B', 'Gemma-3-4B-Instruct', 'Gemma-3-12B-Instruct', 'Gemma-3-27B-Instruct', 'MedGemma-4B', 'MedGemma-4B-Instruct', 'Gemma-3n-E2B', 'Gemma-3n-E4B', 'Gemma-3n-E2B-Instruct', 'Gemma-3n-E4B-Instruct', 'GLM-4-9B', 'GLM-4-9B-Chat', 'GLM-4-9B-1M-Chat', 'GLM-4-0414-9B-Chat', 'GLM-4-0414-32B-Base', 'GLM-4-0414-32B-Chat', 'GLM-4.1V-9B-Base', 'GLM-4.1V-9B-Thinking', 'GLM-Z1-0414-9B-Chat', 'GLM-Z1-0414-32B-Chat', 'GPT-2-Small', 'GPT-2-Medium', 'GPT-2-Large', 'GPT-2-XL', 'Granite-3.0-1B-A400M-Base', 'Granite-3.0-3B-A800M-Base', 'Granite-3.0-2B-Base', 'Granite-3.0-8B-Base', 'Granite-3.0-1B-A400M-Instruct', 'Granite-3.0-3B-A800M-Instruct', 'Granite-3.0-2B-Instruct', 'Granite-3.0-8B-Instruct', 'Granite-3.1-1B-A400M-Base', 'Granite-3.1-3B-A800M-Base', 'Granite-3.1-2B-Base', 'Granite-3.1-8B-Base', 'Granite-3.1-1B-A400M-Instruct', 'Granite-3.1-3B-A800M-Instruct', 'Granite-3.1-2B-Instruct', 'Granite-3.1-8B-Instruct', 'Granite-3.2-2B-Instruct', 'Granite-3.2-8B-Instruct', 'Granite-3.3-2B-Base', 'Granite-3.3-8B-Base', 'Granite-3.3-2B-Instruct', 'Granite-3.3-8B-Instruct', 'Granite-Vision-3.2-2B', 'Hunyuan-7B-Instruct', 'Index-1.9B-Base', 'Index-1.9B-Base-Pure', 'Index-1.9B-Chat', 'Index-1.9B-Character-Chat', 'Index-1.9B-Chat-32K', 'InternLM-7B', 'InternLM-20B', 'InternLM-7B-Chat', 'InternLM-20B-Chat', 'InternLM2-7B', 'InternLM2-20B', 'InternLM2-7B-Chat', 'InternLM2-20B-Chat', 'InternLM2.5-1.8B', 'InternLM2.5-7B', 'InternLM2.5-20B', 'InternLM2.5-1.8B-Chat', 'InternLM2.5-7B-Chat', 'InternLM2.5-7B-1M-Chat', 'InternLM2.5-20B-Chat', 'InternLM3-8B-Chat', 'InternVL2.5-2B-MPO', 'InternVL2.5-8B-MPO', 'InternVL3-1B-hf', 'InternVL3-2B-hf', 'InternVL3-8B-hf', 'InternVL3-14B-hf', 'InternVL3-38B-hf', 'InternVL3-78B-hf', 'Jamba-v0.1', 'Kimi-Dev-72B-Instruct', 'Kimi-VL-A3B-Instruct', 'Kimi-VL-A3B-Thinking', 'Kimi-VL-A3B-Thinking-2506', 'LingoWhale-8B', 'Llama-7B', 'Llama-13B', 'Llama-30B', 'Llama-65B', 'Llama-2-7B', 'Llama-2-13B', 'Llama-2-70B', 'Llama-2-7B-Chat', 'Llama-2-13B-Chat', 'Llama-2-70B-Chat', 'Llama-3-8B', 'Llama-3-70B', 'Llama-3-8B-Instruct', 'Llama-3-70B-Instruct', 'Llama-3-8B-Chinese-Chat', 'Llama-3-70B-Chinese-Chat', 'Llama-3.1-8B', 'Llama-3.1-70B', 'Llama-3.1-405B', 'Llama-3.1-8B-Instruct', 'Llama-3.1-70B-Instruct', 'Llama-3.1-405B-Instruct', 'Llama-3.1-8B-Chinese-Chat', 'Llama-3.1-70B-Chinese-Chat', 'Llama-3.2-1B', 'Llama-3.2-3B', 'Llama-3.2-1B-Instruct', 'Llama-3.2-3B-Instruct', 'Llama-3.3-70B-Instruct', 'Llama-3.2-11B-Vision', 'Llama-3.2-11B-Vision-Instruct', 'Llama-3.2-90B-Vision', 'Llama-3.2-90B-Vision-Instruct', 'Llama-4-Scout-17B-16E', 'Llama-4-Scout-17B-16E-Instruct', 'Llama-4-Maverick-17B-128E', 'Llama-4-Maverick-17B-128E-Instruct', 'LLaVA-1.5-7B-Chat', 'LLaVA-1.5-13B-Chat', 'LLaVA-NeXT-7B-Chat', 'LLaVA-NeXT-13B-Chat', 'LLaVA-NeXT-Mistral-7B-Chat', 'LLaVA-NeXT-Llama3-8B-Chat', 'LLaVA-NeXT-34B-Chat', 'LLaVA-NeXT-72B-Chat', 'LLaVA-NeXT-110B-Chat', 'LLaVA-NeXT-Video-7B-Chat', 'LLaVA-NeXT-Video-7B-DPO-Chat', 'LLaVA-NeXT-Video-7B-32k-Chat', 'LLaVA-NeXT-Video-34B-Chat', 'LLaVA-NeXT-Video-34B-DPO-Chat', 'Marco-o1-Chat', 'MiMo-7B-Base', 'MiMo-7B-Instruct', 'MiMo-7B-Instruct-RL', 'MiMo-7B-RL-ZERO', 'MiMo-7B-VL-Instruct', 'MiMo-7B-VL-RL', 'MiniCPM-2B-SFT-Chat', 'MiniCPM-2B-DPO-Chat', 'MiniCPM3-4B-Chat', 'MiniCPM4-0.5B-Chat', 'MiniCPM4-8B-Chat', 'MiniCPM-o-2_6', 'MiniCPM-V-2_6', 'Ministral-8B-Instruct-2410', 'Mistral-Nemo-Base-2407', 'Mistral-Nemo-Instruct-2407', 'Mistral-7B-v0.1', 'Mistral-7B-v0.2', 'Mistral-7B-v0.3', 'Mistral-7B-Instruct-v0.1', 'Mistral-7B-Instruct-v0.2', 'Mistral-7B-Instruct-v0.3', 'Mistral-Small-24B-Base-2501', 'Mistral-Small-24B-Instruct-2501', 'Mistral-Small-3.1-24B-Base', 'Mistral-Small-3.1-24B-Instruct', 'Mistral-Small-3.2-24B-Instruct', 'Mixtral-8x7B-v0.1', 'Mixtral-8x22B-v0.1', 'Mixtral-8x7B-v0.1-Instruct', 'Mixtral-8x22B-v0.1-Instruct', 'Moonlight-16B-A3B', 'Moonlight-16B-A3B-Instruct', 'OLMo-1B', 'OLMo-7B', 'OLMo-7B-Chat', 'OLMo-1.7-7B', 'OpenChat3.5-7B-Chat', 'OpenChat3.6-8B-Chat', 'OpenCoder-1.5B-Base', 'OpenCoder-8B-Base', 'OpenCoder-1.5B-Instruct', 'OpenCoder-8B-Instruct', 'Orion-14B-Base', 'Orion-14B-Chat', 'Orion-14B-Long-Chat', 'Orion-14B-RAG-Chat', 'Orion-14B-Plugin-Chat', 'PaliGemma-3B-pt-224', 'PaliGemma-3B-pt-448', 'PaliGemma-3B-pt-896', 'PaliGemma-3B-mix-224', 'PaliGemma-3B-mix-448', 'PaliGemma2-3B-pt-224', 'PaliGemma2-3B-pt-448', 'PaliGemma2-3B-pt-896', 'PaliGemma2-10B-pt-224', 'PaliGemma2-10B-pt-448', 'PaliGemma2-10B-pt-896', 'PaliGemma2-28B-pt-224', 'PaliGemma2-28B-pt-448', 'PaliGemma2-28B-pt-896', 'PaliGemma2-3B-mix-224', 'PaliGemma2-3B-mix-448', 'PaliGemma2-10B-mix-224', 'PaliGemma2-10B-mix-448', 'PaliGemma2-28B-mix-224', 'PaliGemma2-28B-mix-448', 'Phi-1.5-1.3B', 'Phi-2-2.7B', 'Phi-3-4B-4k-Instruct', 'Phi-3-4B-128k-Instruct', 'Phi-3-14B-8k-Instruct', 'Phi-3-14B-128k-Instruct', 'Phi-3.5-4B-instruct', 'Phi-3.5-MoE-42B-A6.6B-instruct', 'Phi-3-7B-8k-Instruct', 'Phi-3-7B-128k-Instruct', 'Phi-4-14B-Instruct', 'Pixtral-12B', 'Qwen-1.8B', 'Qwen-7B', 'Qwen-14B', 'Qwen-72B', 'Qwen-1.8B-Chat', 'Qwen-7B-Chat', 'Qwen-14B-Chat', 'Qwen-72B-Chat', 'Qwen-1.8B-Chat-Int8', 'Qwen-1.8B-Chat-Int4', 'Qwen-7B-Chat-Int8', 'Qwen-7B-Chat-Int4', 'Qwen-14B-Chat-Int8', 'Qwen-14B-Chat-Int4', 'Qwen-72B-Chat-Int8', 'Qwen-72B-Chat-Int4', 'Qwen1.5-0.5B', 'Qwen1.5-1.8B', 'Qwen1.5-4B', 'Qwen1.5-7B', 'Qwen1.5-14B', 'Qwen1.5-32B', 'Qwen1.5-72B', 'Qwen1.5-110B', 'Qwen1.5-MoE-A2.7B', 'Qwen1.5-0.5B-Chat', 'Qwen1.5-1.8B-Chat', 'Qwen1.5-4B-Chat', 'Qwen1.5-7B-Chat', 'Qwen1.5-14B-Chat', 'Qwen1.5-32B-Chat', 'Qwen1.5-72B-Chat', 'Qwen1.5-110B-Chat', 'Qwen1.5-MoE-A2.7B-Chat', 'Qwen1.5-0.5B-Chat-GPTQ-Int8', 'Qwen1.5-0.5B-Chat-AWQ', 'Qwen1.5-1.8B-Chat-GPTQ-Int8', 'Qwen1.5-1.8B-Chat-AWQ', 'Qwen1.5-4B-Chat-GPTQ-Int8', 'Qwen1.5-4B-Chat-AWQ', 'Qwen1.5-7B-Chat-GPTQ-Int8', 'Qwen1.5-7B-Chat-AWQ', 'Qwen1.5-14B-Chat-GPTQ-Int8', 'Qwen1.5-14B-Chat-AWQ', 'Qwen1.5-32B-Chat-AWQ', 'Qwen1.5-72B-Chat-GPTQ-Int8', 'Qwen1.5-72B-Chat-AWQ', 'Qwen1.5-110B-Chat-AWQ', 'Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4', 'CodeQwen1.5-7B', 'CodeQwen1.5-7B-Chat', 'CodeQwen1.5-7B-Chat-AWQ', 'Qwen2-0.5B', 'Qwen2-1.5B', 'Qwen2-7B', 'Qwen2-72B', 'Qwen2-MoE-57B-A14B', 'Qwen2-0.5B-Instruct', 'Qwen2-1.5B-Instruct', 'Qwen2-7B-Instruct', 'Qwen2-72B-Instruct', 'Qwen2-MoE-57B-A14B-Instruct', 'Qwen2-0.5B-Instruct-GPTQ-Int8', 'Qwen2-0.5B-Instruct-GPTQ-Int4', 'Qwen2-0.5B-Instruct-AWQ', 'Qwen2-1.5B-Instruct-GPTQ-Int8', 'Qwen2-1.5B-Instruct-GPTQ-Int4', 'Qwen2-1.5B-Instruct-AWQ', 'Qwen2-7B-Instruct-GPTQ-Int8', 'Qwen2-7B-Instruct-GPTQ-Int4', 'Qwen2-7B-Instruct-AWQ', 'Qwen2-72B-Instruct-GPTQ-Int8', 'Qwen2-72B-Instruct-GPTQ-Int4', 'Qwen2-72B-Instruct-AWQ', 'Qwen2-57B-A14B-Instruct-GPTQ-Int4', 'Qwen2-Math-1.5B', 'Qwen2-Math-7B', 'Qwen2-Math-72B', 'Qwen2-Math-1.5B-Instruct', 'Qwen2-Math-7B-Instruct', 'Qwen2-Math-72B-Instruct', 'Qwen2.5-0.5B', 'Qwen2.5-1.5B', 'Qwen2.5-3B', 'Qwen2.5-7B', 'Qwen2.5-14B', 'Qwen2.5-32B', 'Qwen2.5-72B', 'Qwen2.5-0.5B-Instruct', 'Qwen2.5-1.5B-Instruct', 'Qwen2.5-3B-Instruct', 'Qwen2.5-7B-Instruct', 'Qwen2.5-14B-Instruct', 'Qwen2.5-32B-Instruct', 'Qwen2.5-72B-Instruct', 'Qwen2.5-7B-Instruct-1M', 'Qwen2.5-14B-Instruct-1M', 'Qwen2.5-0.5B-Instruct-GPTQ-Int8', 'Qwen2.5-0.5B-Instruct-GPTQ-Int4', 'Qwen2.5-0.5B-Instruct-AWQ', 'Qwen2.5-1.5B-Instruct-GPTQ-Int8', 'Qwen2.5-1.5B-Instruct-GPTQ-Int4', 'Qwen2.5-1.5B-Instruct-AWQ', 'Qwen2.5-3B-Instruct-GPTQ-Int8', 'Qwen2.5-3B-Instruct-GPTQ-Int4', 'Qwen2.5-3B-Instruct-AWQ', 'Qwen2.5-7B-Instruct-GPTQ-Int8', 'Qwen2.5-7B-Instruct-GPTQ-Int4', 'Qwen2.5-7B-Instruct-AWQ', 'Qwen2.5-14B-Instruct-GPTQ-Int8', 'Qwen2.5-14B-Instruct-GPTQ-Int4', 'Qwen2.5-14B-Instruct-AWQ', 'Qwen2.5-32B-Instruct-GPTQ-Int8', 'Qwen2.5-32B-Instruct-GPTQ-Int4', 'Qwen2.5-32B-Instruct-AWQ', 'Qwen2.5-72B-Instruct-GPTQ-Int8', 'Qwen2.5-72B-Instruct-GPTQ-Int4', 'Qwen2.5-72B-Instruct-AWQ', 'Qwen2.5-Coder-0.5B', 'Qwen2.5-Coder-1.5B', 'Qwen2.5-Coder-3B', 'Qwen2.5-Coder-7B', 'Qwen2.5-Coder-14B', 'Qwen2.5-Coder-32B', 'Qwen2.5-Coder-0.5B-Instruct', 'Qwen2.5-Coder-1.5B-Instruct', 'Qwen2.5-Coder-3B-Instruct', 'Qwen2.5-Coder-7B-Instruct', 'Qwen2.5-Coder-14B-Instruct', 'Qwen2.5-Coder-32B-Instruct', 'Qwen2.5-Math-1.5B', 'Qwen2.5-Math-7B', 'Qwen2.5-Math-72B', 'Qwen2.5-Math-1.5B-Instruct', 'Qwen2.5-Math-7B-Instruct', 'Qwen2.5-Math-72B-Instruct', 'QwQ-32B-Preview-Instruct', 'QwQ-32B-Instruct', 'Qwen3-0.6B-Base', 'Qwen3-1.7B-Base', 'Qwen3-4B-Base', 'Qwen3-8B-Base', 'Qwen3-14B-Base', 'Qwen3-30B-A3B-Base', 'Qwen3-0.6B-Instruct', 'Qwen3-1.7B-Instruct', 'Qwen3-4B-Instruct', 'Qwen3-8B-Instruct', 'Qwen3-14B-Instruct', 'Qwen3-32B-Instruct', 'Qwen3-30B-A3B-Instruct', 'Qwen3-235B-A22B-Instruct', 'Qwen3-0.6B-Instruct-GPTQ-Int8', 'Qwen3-1.7B-Instruct-GPTQ-Int8', 'Qwen3-4B-Instruct-AWQ', 'Qwen3-8B-Instruct-AWQ', 'Qwen3-14B-Instruct-AWQ', 'Qwen3-32B-Instruct-AWQ', 'Qwen3-30B-A3B-Instruct-GPTQ-Int4', 'Qwen3-235B-A22B-Instruct-GPTQ-Int4', 'Qwen2-Audio-7B', 'Qwen2-Audio-7B-Instruct', 'Qwen2.5-Omni-3B', 'Qwen2.5-Omni-7B', 'Qwen2.5-Omni-7B-GPTQ-Int4', 'Qwen2.5-Omni-7B-AWQ', 'Qwen2-VL-2B', 'Qwen2-VL-7B', 'Qwen2-VL-72B', 'Qwen2-VL-2B-Instruct', 'Qwen2-VL-7B-Instruct', 'Qwen2-VL-72B-Instruct', 'Qwen2-VL-2B-Instruct-GPTQ-Int8', 'Qwen2-VL-2B-Instruct-GPTQ-Int4', 'Qwen2-VL-2B-Instruct-AWQ', 'Qwen2-VL-7B-Instruct-GPTQ-Int8', 'Qwen2-VL-7B-Instruct-GPTQ-Int4', 'Qwen2-VL-7B-Instruct-AWQ', 'Qwen2-VL-72B-Instruct-GPTQ-Int8', 'Qwen2-VL-72B-Instruct-GPTQ-Int4', 'Qwen2-VL-72B-Instruct-AWQ', 'QVQ-72B-Preview', 'Qwen2.5-VL-3B-Instruct', 'Qwen2.5-VL-7B-Instruct', 'Qwen2.5-VL-32B-Instruct', 'Qwen2.5-VL-72B-Instruct', 'Qwen2.5-VL-3B-Instruct-AWQ', 'Qwen2.5-VL-7B-Instruct-AWQ', 'Qwen2.5-VL-72B-Instruct-AWQ', 'Seed-Coder-8B-Base', 'Seed-Coder-8B-Instruct', 'Seed-Coder-8B-Instruct-Reasoning', 'Skywork-13B-Base', 'Skywork-o1-Open-Llama-3.1-8B', 'SmolLM-135M', 'SmolLM-360M', 'SmolLM-1.7B', 'SmolLM-135M-Instruct', 'SmolLM-360M-Instruct', 'SmolLM-1.7B-Instruct', 'SmolLM2-135M', 'SmolLM2-360M', 'SmolLM2-1.7B', 'SmolLM2-135M-Instruct', 'SmolLM2-360M-Instruct', 'SmolLM2-1.7B-Instruct', 'SOLAR-10.7B-v1.0', 'SOLAR-10.7B-Instruct-v1.0', 'StarCoder2-3B', 'StarCoder2-7B', 'StarCoder2-15B', 'TeleChat-1B-Chat', 'TeleChat-7B-Chat', 'TeleChat-12B-Chat', 'TeleChat-52B-Chat', 'TeleChat2-3B-Chat', 'TeleChat2-7B-Chat', 'TeleChat2-35B-Chat', 'TeleChat2-115B-Chat', 'Vicuna-v1.5-7B-Chat', 'Vicuna-v1.5-13B-Chat', 'Video-LLaVA-7B-Chat', 'XuanYuan-6B', 'XuanYuan-70B', 'XuanYuan2-70B', 'XuanYuan-6B-Chat', 'XuanYuan-70B-Chat', 'XuanYuan2-70B-Chat', 'XuanYuan-6B-Chat-8bit', 'XuanYuan-6B-Chat-4bit', 'XuanYuan-70B-Chat-8bit', 'XuanYuan-70B-Chat-4bit', 'XuanYuan2-70B-Chat-8bit', 'XuanYuan2-70B-Chat-4bit', 'XVERSE-7B', 'XVERSE-13B', 'XVERSE-65B', 'XVERSE-65B-2', 'XVERSE-7B-Chat', 'XVERSE-13B-Chat', 'XVERSE-65B-Chat', 'XVERSE-MoE-A4.2B', 'XVERSE-7B-Chat-GPTQ-Int8', 'XVERSE-7B-Chat-GPTQ-Int4', 'XVERSE-13B-Chat-GPTQ-Int8', 'XVERSE-13B-Chat-GPTQ-Int4', 'XVERSE-65B-Chat-GPTQ-Int4', 'Yayi-7B', 'Yayi-13B', 'Yi-6B', 'Yi-9B', 'Yi-34B', 'Yi-6B-Chat', 'Yi-34B-Chat', 'Yi-6B-Chat-8bits', 'Yi-6B-Chat-4bits', 'Yi-34B-Chat-8bits', 'Yi-34B-Chat-4bits', 'Yi-1.5-6B', 'Yi-1.5-9B', 'Yi-1.5-34B', 'Yi-1.5-6B-Chat', 'Yi-1.5-9B-Chat', 'Yi-1.5-34B-Chat', 'Yi-Coder-1.5B', 'Yi-Coder-9B', 'Yi-Coder-1.5B-Chat', 'Yi-Coder-9B-Chat', 'Yi-VL-6B-Chat', 'Yi-VL-34B-Chat', 'Yuan2-2B-Chat', 'Yuan2-51B-Chat', 'Yuan2-102B-Chat', 'Zephyr-7B-Alpha-Chat', 'Zephyr-7B-Beta-Chat', 'Zephyr-141B-ORPO-Chat', 'Custom'] Required The input value that is provided in the "parameter_5" Dropdown component.
07-17
深度分析代码:import torch import gc import numpy as np from torch.utils.data import DataLoader import os # Assuming these utility imports exist based on the original code from ImageDataset_MDGTnet_H1318_com_cls import ImgDataset_test_bce # Load the enhanced MDGTnet from networks.MDGTnet import MDGTnet from tqdm import tqdm from sklearn.metrics import accuracy_score, confusion_matrix, cohen_kappa_score import random from utils.label_vision import label_vision_1d seed = 6 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.backends.cudnn.enabled = True # set model paras (Must match training configuration) in_ch = 144 out_ch = [512, 768, 512, 512, 512, 512, 300, 150] spec_range = [65, 144] padding = 0 class_num = 4 slice_size = 3 batch_size = 1024 device = "cuda:0" # Update model path (Assuming 15 epochs trained) model_path = r"models/MDGTnet_H1318/model_epoch15.pth" # Configure test data (PU or PC) # --- Configuration for PU dataset_name = "PU" img_path = "data/MDGTnet_H1318/gen_PU/img_norm_all.npy" label_path = "data/MDGTnet_H1318/gen_PU/gt_norm_all.npy" img_shape = (610, 340) # ---------------------------- # --- Uncomment for PC --- # dataset_name = "PC" # img_path = "data/MDGTnet_H1318/gen_PC/img_norm_all.npy" # label_path = "data/MDGTnet_H1318/gen_PC/gt_norm_all.npy" # img_shape = (1096, 715) # ---------------------------- try: img = np.load(img_path) label = np.load(label_path) except FileNotFoundError: print(f"Error: Test data not found at {img_path} or {label_path}.") exit() img = torch.from_numpy(img).float() label = torch.LongTensor(label) test_set = ImgDataset_test_bce(img, label) del img, label gc.collect() # Set shuffle=False for testing test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False) # define and load model (Enhanced MDGTnet) model = MDGTnet(in_ch=in_ch, out_ch=out_ch, padding=padding, slice_size=slice_size, spec_range=spec_range, class_num=class_num).to(device) # Load the trained weights if os.path.exists(model_path): try: model.load_state_dict(torch.load(model_path)) print(f"Successfully loaded enhanced model from {model_path}") except RuntimeError as e: print(f"Error loading model: {e}. Ensure configuration matches the trained model.") exit() else: print(f"Error: Model file not found at {model_path}.") exit() # test model.eval() # Set model to evaluation mode gt_total = [] pred_total = [] row_col_total = [] with torch.no_grad(): loop = tqdm(enumerate(test_loader), total=len(test_loader)) for i, data in loop: # Updated forward pass: input(x_intra, x_inter, alpha=0.0 for testing) # Output: y_cls, y_side_1..4, y_domain, features y_out_te, __, __, __, __, __, __ = model(data[1].to(device), data[0].to(device), alpha=0.0) # Extract ground truth labels and coordinates gt_te = data[2][:, :class_num].argmax(dim=1).flatten().cpu().numpy() row_col = data[2][:, class_num:] # Get predictions (Use sigmoid as BCEWithLogitsLoss was used) pred_prob = torch.sigmoid(y_out_te) pred = pred_prob.argmax(dim=1).flatten().cpu().numpy() gt_total.extend(gt_te) pred_total.extend(pred) # Ensure row_col is converted to numpy for extension row_col_total.extend(row_col.cpu().numpy()) oa_batch = np.sum(gt_te == pred) / data[0].shape[0] loop.set_description(f'Testing on {dataset_name} [{i+1}/{len(test_loader)}]') loop.set_postfix(oa_batch=f"{oa_batch:.4f}") # evaluation print("\n--- Evaluation Results (Enhanced MDGTnet) ---") cm = confusion_matrix(gt_total, pred_total) print("Confusion Matrix:\n", cm) oa = accuracy_score(gt_total, pred_total) print(f"Overall Accuracy (OA): {oa*100:.2f}%") kappa = cohen_kappa_score(gt_total, pred_total) print(f"Kappa Coefficient: {kappa:.4f}") # Class-wise accuracy class_acc = cm.diagonal() / (cm.sum(axis=1) + 1e-9) print("Class-wise Accuracy:") for i, acc in enumerate(class_acc): print(f" Class {i+1}: {acc*100:.2f}%") # plot classification results if label_vision_1d: print("\nGenerating classification maps...") pred_map_path = f"logs/pred_H1318_{dataset_name}_enhanced.png" gt_map_path = f"gt_H1318_{dataset_name}.png" # Ensure row_col_total is an array if it's a list if isinstance(row_col_total, list): row_col_total = np.array(row_col_total) label_vision_1d(pred_total, row_col_total, img_shape[0], img_shape[1], pred_map_path) label_vision_1d(gt_total, row_col_total, img_shape[0], img_shape[1], gt_map_path) print(f"Prediction map saved to {pred_map_path}")
12-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值