《计算机应用数学》教案
授课对象系 别课时安排2年级班次章节题目第6章 6.1 数项级数(6.1.4)教学目标掌握数项级数的审敛法教学重点数项级数的审敛法教学难点熟练运用数项级数的审敛法教学方法讲授法教学用具黑板、粉笔、多媒体新
课
导
入一般情况下,要判断一个级数的敛散性,只利用级数收敛和发散的定义和性质,常常是很困难的,因此,需要建立判定级数敛散性的判别法。重
点
与
难
点
讲
解
方
法重点讲解方法:
讲解清楚数项级数不同审敛法的适用条件.
难点讲解方法:
通过练习和讲解实例,使学生真正理解数项级数审敛法的运用方法.教
学
小
结知识小结数项级数的审敛法教后札记改进措施课
后
作
业习题6-1
5.(1)(2)(3)(4)(5)(6)
6.(1)(2)(3)(4)
7.(1)(2)教学过程:
一、知识回顾
1、数项级数的概念、敛散性和性质等;
2、求极限的方法.
二、新课导入
一般情况下,要判断一个级数的敛散性,只利用级数收敛和发散的定义和性质,常常是很困难的,因此,需要建立判定级数敛散性的判别法。
三、新课内容
定义6.5 若级数中的,则称该级数为正项级数.
定理6.1 比较审敛法
设正项级数和且,(1)若收敛,则收敛;(2)若发散,则发散.
定理6.2 比值审敛法
设正项级数,且,则当时,该级数收敛;当时,该级数发散;当时,该级数可能收敛也可能发散.
定义6.6 形如的级数,称为交错级数.
定理6.3 交错级数审敛法(即莱布尼兹定理)
若交错级数满足:(1);(2),则该级数收敛,且其和.
定义6.7 若级数收敛,则称级数绝对收敛;若级数发散而收敛,则称级数条件收敛.
定理6.4 若级数绝对收敛,则级数必收敛.
【例题精讲】
例1 判断级数的敛散性.
解:因为,且级数与调和级数有相同的敛散性,而调和级数是发散的,即级数也是发散的,所以由比较审敛法可知,该级数发散.
例2 判断级数的敛散性.
解:因为,而级数是调和级数去掉第一项所成的级数,性质6.3可知,级数是发散的,所以由比较审敛法可知,该级数发散.
例3 判断级数的敛散性.
解:因为,且级数是的级数,即是收敛的,所以由比较审敛法可知,该级数收敛.
例4 判断下列级数的敛散性.
解法一:因为,所以由比值审敛法可知,该级数收敛.
解法二:因为,而级数是公比的等比级数,即级数是收敛的,所以由比较审敛法可知,该级数收敛.
例5 判断级数的敛散性.
解:因为
,所以由比值审敛法可知,该级数发散.
例6 判断级数的敛散性.
解法一:因为,所以由比值审敛法可知,该级数收敛.
解法二:因为,且级数是公比的等比级数,即级数是收敛的,所以由比较审敛法可知,该级数收敛.
例7 判断级数的敛散性.
解:因为级数是交错级数,且满足且,所以级数收敛.
例8 判断级数的敛散性.
解:因为,而级数是的级数,即是收敛的,所以由比较审敛法可知,级数收敛,即级数绝对收敛,由定理6.4可知,级数收敛.
【课堂练习】
例1 判断级数的敛散性.
解:因为,且级数是公比的等比级数,即级数是收敛的,所以由比较审敛法可知,该级数收敛.
例2 判断级数的敛散性.
解法一:因为,所以由比值审敛法可知,该级数发散.
解法二:因为,所以该级数发散.
例3 判断级数的敛散性.
解:因为,所以比值审敛法失效,需用其它方法判定.
因为,且级数是的级数,即是收敛的,所以,由比较审敛法可知,该级数收敛.
【问题思考】
学习了常数项级数后,函数项级数又是什么样的级数呢?
【知识小结】
数项级数的审敛法:比较审敛法、比值审敛法、交错级数审敛法等.
【课后作业】
习题6-1
5.(1)(2)(3)(4)(5)(6)
6.(1)(2)(3)(4)
7.(1)(2)
四、板书设计
课题
一、
二、
三、
课堂练习
例1
例2
重点:
难点: