python 三维矩阵怎么平滑其值_动画+在矩阵之间平滑插值

该博客介绍了如何使用Python进行三维矩阵的平滑处理,并结合matplotlib库创建动画,展示在矩阵之间进行线性和非线性插值的效果。通过示例代码解释了如何在不同阶段平滑过渡多个3D矩阵,并展示了如何保存成GIF动画。
摘要由CSDN通过智能技术生成

您只需在每对点之间创建一条线性路径;将其与^{}组合起来就可以了import matplotlib.animation as animation

def update_plot(t):

interpolation = originalPoints*(1-t) + newPoints*t

scat.set_offsets(interpolation.T)

return scat,

fig = plt.gcf()

plt.scatter(originalPoints[0,:],originalPoints[1,:], color='red')

plt.scatter(newPoints[0,:],newPoints[1,:], color='blue')

scat = plt.scatter([], [], color='green')

animation.FuncAnimation(fig, update_plot, frames=np.arange(0, 1, 0.01))

2HIAT.gif

编辑:编辑后的问题现在要求一个非线性插值;将update_plot替换为

^{pr2}$

你得到了

5a16872b73159c09a690df131494695a.gif

编辑2:关于下面注释中关于颜色插值的查询&#x

在机械臂的轨迹规划中,三次样条插值是实现平滑轨迹的关键技术之一。通过三次样条插值,可以确保机械臂末端执行器沿着一条连续且光滑的路径移动,这对于精确控制和避免运动过程中的突跳非常重要。下面是如何使用Python实现这一过程的详细步骤: 参考资源链接:[Python实现机械臂三次样条轨迹规划示例](https://wenku.csdn.net/doc/1980cuisrq?spm=1055.2569.3001.10343) 1. **定义时间点和末端执行器位置**: 首先,你需要定义机械臂末端执行器在三维空间中的位置序列,以及这些位置对应的时间点。这些数据通常根据任务需预先设定或通过逆运动学计算得到。 2. **使用三次样条插值**: 在Python中,`scipy.interpolate`库提供了实现三次样条插值的函数CubicSpline。你可以使用它来为末端执行器在X、Y、Z三个方向上的位置分别进行插值计算。这样,你就能得到在任意时间点上末端执行器的位置。 3. **关节角度计算**: 计算末端执行器的位置之后,需要通过运动学逆解计算出对应每个时间点的关节角度。这通常需要机械臂的正运动学模型,其中涉及到一系列复杂的三角函数和矩阵运算。可以通过数方法,如牛顿-拉夫森迭代法等,来解这些非线性方程。 4. **弧度转换**: 在计算过程中,由于三角函数使用的是弧度制,所以需要将角度从度转换为弧度。这一步骤非常重要,因为它确保了计算的准确性。 5. **轨迹规划的实现**: 最终,根据计算出的关节角度序列,可以生成一个完整的轨迹规划方案。这个方案包括了在预定时间内的关节角度变化,它将指导机械臂按照预期的路径运动。 这个过程中,你可以利用《Python实现机械臂三次样条轨迹规划示例》中的代码框架和方法作为起点。通过深入理解示例中的代码逻辑,你可以进一步扩展和调整代码,以适应更复杂或具体的应用场景。此外,对于更高级的应用,可能需要考虑引入额外的数学优化方法,如遗传算法或粒子群优化,以实现对轨迹规划更精确的控制和优化。 参考资源链接:[Python实现机械臂三次样条轨迹规划示例](https://wenku.csdn.net/doc/1980cuisrq?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值