matlab silhouette,Silhouette plot

该博客介绍了如何使用MATLAB生成轮廓图以分析聚类数据。通过生成随机样本数据并使用kmeans进行两聚类,展示了使用默认的平方欧几里得距离和欧几里得距离两种情况下的轮廓图。结果表明,两种情况下数据都分为大小相等的两个聚类,并且所有点的轮廓值较大,意味着聚类分离良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Create silhouette plots from clustered data using different distance metrics.

Generate random sample data.

rng('default') % For reproducibility

X = [randn(10,2)+3;randn(10,2)-3];

Create a scatter plot of the data.

scatter(X(:,1),X(:,2));

title('Randomly Generated Data');

d282a22a11f3049511042c6d64e825e3.png

The scatter plot shows that the data appears to be split into two clusters of equal size.

Partition the data into two clusters using kmeans with the default squared Euclidean distance metric.

clust = kmeans(X,2);

clust contains the cluster indices of the data.

Create a silhouette plot from the clustered data using the default squared Euclidean distance metric.

silhouette(X,clust)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值