matlab的案例分析,《MATLAB统计分析与应用:40个案例分析》源代码

该博客展示了如何使用MATLAB的reglm函数进行多重线性回归和广义线性回归分析,包括线性、交互项、二次项模型的使用。通过一个具体的例子解释了函数的用法,并呈现了方差分析表、统计量和参数估计结果。
摘要由CSDN通过智能技术生成

function stats = reglm(y,X,model,varnames)

% 多重线性回归分析或广义线性回归分析

%

% reglm(y,X),产生线性回归分析的方差分析表和参数估计结果,并以表格形式显示在屏幕上. 参

% 数X是自变量观测值矩阵,它是n行p列的矩阵. y是因变量观测值向量,它是n行1列的列向量.

%

% stats = reglm(y,X),还返回一个包括了回归分析的所有诊断统计量的结构体变量stats.

%

% stats = reglm(y,X,model),用可选的model参数来控制回归模型的类型. model是一个字符串,

% 其可用的字符串如下

% 'linear' 带有常数项的线性模型(默认情况)

% 'interaction' 带有常数项、线性项和交叉项的模型

% 'quadratic' 带有常数项、线性项、交叉项和平方项的模型

% 'purequadratic' 带有常数项、线性项和平方项的模型

%

% stats = reglm(y,X,model,varnames),用可选的varnames参数指定变量标签. varnames

% 可以是字符矩阵或字符串元胞数组,它的每行的字符或每个元胞的字符串是一个变量的标签,它的行

% 数或元胞数应与X的列数相同. 默认情况下,用X1,X2,…作为变量标签.

%

% 例:

% x = [215 250 180 250 180 215 180 215 250 215 215

% 136.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值