一、什么是TPU?
TPU(Tensor Processing Unit,张量处理器)是谷歌专门为机器学习任务设计的定制化ASIC芯片,旨在加速神经网络训练与推理。其核心目标是针对矩阵运算(如矩阵乘加)优化硬件架构,提供远超CPU/GPU的能效比(TOPS/W)和计算密度(TOPS/mm²)。
核心特性:
-
脉动阵列(Systolic Array):
通过数据流驱动架构,实现矩阵乘法的高效流水线计算,减少内存访问延迟。 -
混合精度支持:
支持BF16、FP16、INT8等低精度计算,适配不同模型需求。 -
大规模可扩展性:
通过光互连(Optical Interconnect)技术,单集群(TPU Pod)可集成数万颗芯片(如TPU v4 Pod算力达1.1 ExaFLOPS)。
二、TPU的核心作用
1. 加速机器学习工作负载
-
训练加速:
相比GPU,TPU v4在ResNet-50训练任务中速度提升2.7倍(相同功耗下)。 -
推理优化:
支持批量推理(Batch Inference),如谷歌搜索排名模型延迟降低60%。
2. 能效比优势
-
TPU v4的能效比(FLOPS/W)是同期GPU的3-5倍,显著降低数据中心运营成本。
3. 大规模模型支持
-
支