TPU(Tensor Processing Unit)详解

一、什么是TPU?

TPU(Tensor Processing Unit,张量处理器)是谷歌专门为机器学习任务设计的定制化ASIC芯片,旨在加速神经网络训练与推理。其核心目标是针对矩阵运算(如矩阵乘加)优化硬件架构,提供远超CPU/GPU的能效比(TOPS/W)和计算密度(TOPS/mm²)。

核心特性
  • 脉动阵列(Systolic Array)
    通过数据流驱动架构,实现矩阵乘法的高效流水线计算,减少内存访问延迟。

  • 混合精度支持
    支持BF16、FP16、INT8等低精度计算,适配不同模型需求。

  • 大规模可扩展性
    通过光互连(Optical Interconnect)技术,单集群(TPU Pod)可集成数万颗芯片(如TPU v4 Pod算力达1.1 ExaFLOPS)。


二、TPU的核心作用

1. 加速机器学习工作负载
  • 训练加速
    相比GPU,TPU v4在ResNet-50训练任务中速度提升2.7倍(相同功耗下)。

  • 推理优化
    支持批量推理(Batch Inference),如谷歌搜索排名模型延迟降低60%。

2. 能效比优势
  • TPU v4的能效比(FLOPS/W)是同期GPU的3-5倍,显著降低数据中心运营成本。

3. 大规模模型支持
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值