matlab cramer法则,玩转线性代数(8)第一章第七节_克拉姆法则与秘密武器

本文介绍了克莱姆法则在解线性方程组中的应用,特别是对于n*n线性方程组有唯一解的情况。讨论了在矩阵行列式计算量大时,如何利用Mathlab软件进行高效求解,强调理解原理的重要性,并探讨了行列式在数学中的美学价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

地点:学院大自习室;人物:小刚,小慧,小明。

讨论内容:克拉姆法则与用Matlab软件求行列式。

7.1 克拉姆法则

我:“通过前两节的学习,我们算是彻底掌握了n阶行列式的计算,为什么要计算行列式?要不忘初心。其实我们一开始就是想解线性方程组,二、三元线性方程组可以用行列式方法平求解!四元或四元以上的线性方程组到底能不能用行列式来解呢?当时我们曾举过一个非常简单的例子,下面再举一个来验证一下二、三元线性方程组的解法可否移植到四元线性方程组上。”

小明:“我来验证一下。”

8a670e64cb4309f4c98e810ba4d5f5e6.png

fab0fefd441ad72c48fcae8650b6d2b7.png

克莱姆在解线性方程组方面做出巨大贡献,克莱姆(Cramer,Gabriel,瑞士数学家 1704-1752),1734年成为几何学教授,1750年任哲学教授。第一次正式引入坐标系的纵轴(Y轴),然后讨论曲线变换,为了确定经过5个点的一般二次曲线的系数,应用了著名的“克莱姆法则”,即由线性方程组的系数确定方程组解的表达式。

8f1fbe3d07fed2cc41c99c6200dfc116.png

bb964fb4b6f4671244ff78a8be6392b8.png

e242984672eed2a88eabc72533d933ca.png

7.2 数学软件Matlab

讨论到这里,我们三人都非常的开心,感觉自己学到了很多知识,可以用来解决以后遇到实际问题。可是过了一会,小慧提出了一个问题:

“如果有一个线性方程组模型,它的系数都很大,计算太麻烦,碰到这样的问题我只能知难而退!”

我:“提的好,李老师在课堂上对这个问题有交待。”

克莱姆法则应用于未知数个数与方程个数相等的n*n 的线性方程组,且系数行列式不能为零,即有唯一解的情况.当n较大时计算量通常很大。因此克莱姆法则的主要意义是在理论上,它明确指出了方程组的解与系数之间的关系.几个世纪前人们生活简单,线性方程组规模不大,行列式在解析几何和其它数学分支中起着重要作用。

目前在实际解线性方程组时手动计算的时代已经过去了,下面给大家介绍一个计算行列式的密秘武器:数学软件Matlab。

Matlab的使用

首先下载安装matlab7.0,安装完毕后打开程序,界面如下

274acc18e5586fc1b17ea30023cc85c6.png

在matlab使用环境中有个Command Window窗口,在命令提示符>>光标处输入命令后,再回车键即可执行命令。

b15d65a92ed5783da6e073adf7569b46.png

我:“李老师也说,虽然Matlab数学软件把我们从繁重的计算任务中解脱出来,但是对于行列式的计算原理我们必须得懂,就是虽然我们不手动算了,但是方法要会。”

小慧:“嗯,线性方程组不但有n*n,还有 m*n的情况,解也不并只有唯有解,如果有无穷多解,解应如何求?”

d6fe82b13ab2bf9ff9db98e92f3ab2b9.png

“显然行列式不能回答这些问题,所以我们必须引入新的工具来解决这些问题。”

我:“行列式学完了,我觉得行列式很美,你们想一想它的排列规律、它的计算,所以说数学是大自然的语言这话没错,人类与自然的交流是一个永恒的话题。人类从自然中索取物质,维持生命,同时又从它身上感悟美感,培养审美能力。大自然为什么给人类以美感呢?因为它蕴含有许多美的要素,如对称、和谐、奇巧、虚实、变化、新鲜等等。这些要素在我们人类的精神产品中,如数学、小说、戏剧、绘画、音乐中都可以找到,但只有在数学中才会体现得那么淋漓尽致,尤其是在对称、简洁和变化上。

小慧:“说的好啊,数学是人类智慧的结晶,只有数学才真正体现人之区别于动物的聪明之处,一张纸、一只笔就可以得到那么多美妙的结论,公理(事实)加上人脑的逻辑和推理使数学无往而不胜!”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值