经济学与计算机结合,理论计算机在物理学和经济学领域的重要作用

信息技术特别是网络技术的发展给我们带来了极大的变化。当然有些人可能会觉得有些经典的学科可能没有太多的变化。事实并非如此。过去,证明(推导)与实验是科学发现中最重要的两个方式,现在计算已经越来越成为科学发现的第三个重要途径。计算机科学不仅作为工具为其他学科提供支持,而且它与其他学科的交叉在更深刻、更本质的意义上影响着计算机学科与其他学科基本观念的发展。计算机理论一般都处在这个交叉的前沿。比如有一个论断是“NP完全理论是计算机科学对于其他学科最重要的智力输出”。如果在物理、化学、生物、经济学等非计算机学科的文献中搜索关键词“NP完全”,我们就能搜到无数的论文。计算复杂性已经成为科学家看待很多自然和社会问题的一个新的重要视角。以自然科学中物理学和社会科学中经济学为例看看它们与计算机科学是怎样交叉的。

1. 物理学

量子信息与量子计算是物理学与计算机科学结合的一个很好的例子。量子力学的理论提供了一个新的计算模型,看起来比经典的计算机更加强大。比较有名的例子是大数分解在量子计算机上可以多项式时间内完成,但是在经典计算机上,我们不知道这样的算法是否存在。反之,量子计算机的发展也深刻影响着量子力学理论的发展。量子计算机发展的一个最重要的动机就是量子模拟,如果可以做量子模拟,科学家们就能更好地验证和发展量子力学的理论。

还有一个和计算机科学密切相关的领域是统计物理。统计物理研究的基本对象是微观粒子间的相互作用与系统宏观性质(比如能量、熵等)之间的关系。这种结构在数学上与前面说到的约東可满足问题框架是一样的。比如,统计物理中最重要的概念配分函数是一个加权计数问题。统计物理中最重要的相变现象也与相应问题的计算复杂性有直接的联系。统计物理学中有很多的数学说明是不严格的。最近一些理论计算机科学家的工作就是对统计物理学家原来的猜想进行了严格的证明。同时,统计物理的一些观点也被应用到计算问题的研究中,比如我们通过统计物理中相关性衰减的观念来设计计数问题的近似算法。惠普实验室研究员维奈·德奥拉利卡(Vinay Deolalika)在2010年曾经声称给出了P不等于NP的证明,用的就是统计物理加逻辑的方法。虽然最后被大家确认这不是一个合法的证明,但是,这也是曾经在一个多星期内引起学术界极大关注的事件,说明大家认为这个途径有成功的可能性。

354e75b728cad7b97a3f373722b69c5e.png

2. 经济学

一方面,传统的经济形态和商业模式在网络时代发生了许多变化,经典的经济学理论需要不断被检验和修正,从而产生新的经济学理论;另一方面,随着分布式系统、络以及云计算等技术的发展,一个计算任务的完成往往需要多方合作,使得计算机协议或算法设计不仅要满足有效性、容错性等传统需要,还要考虑博弈论和经济学的约束。所以,无论从经济学还是从计算机学科的发展角度看,两者的交叉和结合都呈现出不可阻挡的趋势。近年来,学术界在这个交叉学科里取得了长足的进步,一些新的理论被发展并且越来越深刻地影响着这两个学科。随着新的应用、现象和实践的不断出现以及理论的不断深入,计算经济学所包含的内容也在不断扩充。

最优拍卖设计(Competitive Auctions)传统经济学的拍卖理论一般有个先验概率的分布,但现实中这个分布是可获得或者可估计的。理论计算机中的模型一般是分析一个算法在最坏情形下的性能。2002年,计算机科学家提出了一个基于最坏情况分析的最优拍卖模型,并在论文中提出了一个常数近似的最优拍卖机制。在随后的十多年里,这个近似比被不断改进。

拍卖和定价问题中的外部性(Pricing and Auctions for Markets with Externalities)人与人之间通过朋友关系与社会网络相连,因此物品(如手机)对于某人的价值会受到他周围朋友是否使用该物品的影响。传统的经济学比较关注不同货物之间的外部性,而对人与人之间的外部性关注得比较少。这种人与人之间的外部性使得传统经济学中关于定价和拍卖的理论不再成立。我和我的合作者们在这种新的语境下,重新构建了关于定价和拍卖的理论,设计出最优定价及拍卖算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值