openai agents sdk实战-基于ollama+qwen2.5实现外部工具串行调用

目录

0 环境准备

1 开发环境准备

1.1 创建项目python环境

1.2 在pycharm创建项目

1.3 安装项目依赖

2 资源准备

3 程序逻辑实现

3.1 新建agents_sdk_tool_serial.py文件

 3.2 导入相关依赖

3.3 加载配置文件

3.4 定义请求天气接口方法

3.5 定义格式化天气接口返回内容

3.6 定义获取天气agent sdk方法

3.7 定义将内容写入本地文件方法

3.8 定义获取openai client方法

3.9 定义获取chat模型方法

3.10 定义获取agent方法

3.11 定义整个agent调用方法

3.12 定义main入口方法

4 完整代码

5 运行结果

附录

配置文件.env


0 环境准备

  • ollama已部署推理模型qwen:7b
  • 已安装miniconda环境
  • 具备科学上网条件

1 开发环境准备

1.1 创建项目python环境

通过conda命令创建项目的python开发环境

 conda create -n mcp_demo python=3.10

1.2 在pycharm创建项目

  • 解释器类型:选择自定义环境
  • 环境:选择现有
  • 类型:选择conda
  • 环境:选择上一步创建的环境

1.3 安装项目依赖

安装openai、openai-agents openai相关依赖

安装python-dotenv python读取环境配置文件依赖

 pip install openai python-dotenv openai-agents httpx

2 资源准备

        本项目中需要调用天气接口获取城市的天气信息,因此需要注册天气API网站,并且获取调用key。

具体流程请参考以下链接的第二章节:MCP实战-基于Ollama+qwen2.5以sse方式实现MCP协议工具调用_mcp sse-CSDN博客

3 程序逻辑实现

3.1 新建agents_sdk_tool_serial.py文件

 3.2 导入相关依赖

import json
import os

import httpx
from agents import function_tool, set_default_openai_client, Runner, OpenAIChatCompletionsModel, Agent
from dotenv import load_dotenv
from openai import AsyncOpenAI

3.3 加载配置文件

load_dotenv()

openweather_api_key = os.getenv('OPENWEATHER_API_KEY')
openweather_base_url = os.getenv('OPENWEATHER_BASE_URL')
user_agent = os.getenv('USER_AGENT')

3.4 定义请求天气接口方法

async def get_weather(city):
    """
    从OpenWeather API 获取天气信息
    :param city: 城市名称(需要试用英文,如 beijing)
    :return: 天气数据字典;若发生错误,返回包含error信息的字典
    """
    params = {
        "q": city,
        "appid": openweather_api_key,
        "units": "metric",
        "lang": "zh_cn",
    }
    headers = {"User-Agent": user_agent}

    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(openweather_base_url, params=params, headers=headers, timeout=30)
            response.raise_for_status()
            return response.json()
        except httpx.HTTPStatusError as e:
            return {"error": f"HTTP请求错误:{e}"}
        except Exception as e:
            return {"error": f"发生错误:{e}"}

3.5 定义格式化天气接口返回内容

def format_weather_data(data):
    """
    格式化天气数据
    :param data: 天气数据字典
    :return: 格式化后的字符串;若发生错误,返回包含error信息的字符串
    """

    #  如果传入的是字符串,则先转换成字典
    if isinstance(data, str):
        data = json.loads(data)

    if "error" in data:
        return data["error"]
    weather = data["weather"][0]["description"]
    temperature = data["main"]["temp"]
    city = data["name"]
    country = data["sys"]["country"]
    humidity = data["main"]["humidity"]
    wind = data["wind"]["speed"]

    return f"城市:{city}, {country}\n天气:{weather}\n温度:{temperature}°C\n湿度:{humidity}%\n风速:{wind}m/s"

3.6 定义获取天气agent sdk方法

@function_tool
async def get_weather_tool(city: str):
    """
    查询即时天气函数
    :param city: 必要参数,字符串类型,用于表示查询天气的具体城市名称,\
    注意,中国的城市需要用对应城市的英文名称代替,例如如果需要查询北京市天气,则city参数需要输入'Beijing';
    :return:OpenWeather API查询即时天气的结果,具体URL请求地址为:https://api.openweathermap.org/data/2.5/weather\
    返回结果对象类型为解析之后的JSON格式对象,并用字符串形式进行表示,其中包含了全部重要的天气信息
    """
    weather_data = await get_weather(city)
    return format_weather_data(weather_data)

        需要注意的是,在进行外部函数调用的时候,Agents SDK自动生成的tools参数列表,就相当于是Function calling的json schema对象,只不过是从我们定义的外部函数的函数说明中自动读取的,因此函数说明要准确。

3.7 定义将内容写入本地文件方法

@function_tool
def write_file(content):
    """
    将指定内容写入本地文件。
    :param content: 必要参数,字符串类型,用于表示需要写入文档的具体内容。
    :return:是否成功写入
    """
    with open("weather.txt", "w", encoding="utf-8") as file:
        file.write(content)

3.8 定义获取openai client方法

def get_openai_client():
    api_key = os.getenv('OPENAI_API_KEY')
    base_url = os.getenv('BASE_URL')
    return AsyncOpenAI(
        api_key=api_key,
        base_url=base_url
    )

3.9 定义获取chat模型方法

def get_chat_model(external_client):
    model_name = os.getenv('MODEL')
    return OpenAIChatCompletionsModel(
        model=model_name,
        openai_client=external_client
    )

3.10 定义获取agent方法

def get_agent(model):
    return Agent(
        name = "助手",
        instructions = "你是一名助人为乐的助手",
        tools = [get_weather_tool, write_file],
        model = model
    )

        需要绑定定义的两个工具方法get_weather_tool和write_file。

3.11 定义整个agent调用方法

async def run_request():
    external_client = get_openai_client()
    set_default_openai_client(external_client)

    agent = get_agent(get_chat_model(external_client))

    result = await Runner.run(
        agent,
        "查询武汉天气,待获取完整的天气信息后并将其写入本地文件"
    )

    return result.final_output

3.12 定义main入口方法

if __name__ == "__main__":
    import asyncio
    print(asyncio.run(run_request()))

4 完整代码

import json
import os

import httpx
from agents import function_tool, set_default_openai_client, Runner, OpenAIChatCompletionsModel, Agent
from dotenv import load_dotenv
from openai import AsyncOpenAI

load_dotenv()

openweather_api_key = os.getenv('OPENWEATHER_API_KEY')
openweather_base_url = os.getenv('OPENWEATHER_BASE_URL')
user_agent = os.getenv('USER_AGENT')

async def get_weather(city):
    """
    从OpenWeather API 获取天气信息
    :param city: 城市名称(需要试用英文,如 beijing)
    :return: 天气数据字典;若发生错误,返回包含error信息的字典
    """
    params = {
        "q": city,
        "appid": openweather_api_key,
        "units": "metric",
        "lang": "zh_cn",
    }
    headers = {"User-Agent": user_agent}

    async with httpx.AsyncClient() as client:
        try:
            response = await client.get(openweather_base_url, params=params, headers=headers, timeout=30)
            response.raise_for_status()
            return response.json()
        except httpx.HTTPStatusError as e:
            return {"error": f"HTTP请求错误:{e}"}
        except Exception as e:
            return {"error": f"发生错误:{e}"}

def format_weather_data(data):
    """
    格式化天气数据
    :param data: 天气数据字典
    :return: 格式化后的字符串;若发生错误,返回包含error信息的字符串
    """

    #  如果传入的是字符串,则先转换成字典
    if isinstance(data, str):
        data = json.loads(data)

    if "error" in data:
        return data["error"]
    weather = data["weather"][0]["description"]
    temperature = data["main"]["temp"]
    city = data["name"]
    country = data["sys"]["country"]
    humidity = data["main"]["humidity"]
    wind = data["wind"]["speed"]

    return f"城市:{city}, {country}\n天气:{weather}\n温度:{temperature}°C\n湿度:{humidity}%\n风速:{wind}m/s"

@function_tool
async def get_weather_tool(city: str):
    """
    查询即时天气函数
    :param city: 必要参数,字符串类型,用于表示查询天气的具体城市名称,\
    注意,中国的城市需要用对应城市的英文名称代替,例如如果需要查询北京市天气,则city参数需要输入'Beijing';
    :return:OpenWeather API查询即时天气的结果,具体URL请求地址为:https://api.openweathermap.org/data/2.5/weather\
    返回结果对象类型为解析之后的JSON格式对象,并用字符串形式进行表示,其中包含了全部重要的天气信息
    """
    weather_data = await get_weather(city)
    return format_weather_data(weather_data)


@function_tool
def write_file(content):
    """
    将指定内容写入本地文件。
    :param content: 必要参数,字符串类型,用于表示需要写入文档的具体内容。
    :return:是否成功写入
    """
    with open("weather.txt", "w", encoding="utf-8") as file:
        file.write(content)



def get_openai_client():
    api_key = os.getenv('OPENAI_API_KEY')
    base_url = os.getenv('BASE_URL')
    return AsyncOpenAI(
        api_key=api_key,
        base_url=base_url
    )

def get_chat_model(external_client):
    model_name = os.getenv('MODEL')
    return OpenAIChatCompletionsModel(
        model=model_name,
        openai_client=external_client
    )

def get_agent(model):
    return Agent(
        name = "助手",
        instructions = "你是一名助人为乐的助手",
        tools = [get_weather_tool, write_file],
        model = model
    )

async def run_request():
    external_client = get_openai_client()
    set_default_openai_client(external_client)

    agent = get_agent(get_chat_model(external_client))

    result = await Runner.run(
        agent,
        "查询武汉天气,待获取完整的天气信息后并将其写入本地文件"
    )

    return result.final_output

if __name__ == "__main__":
    import asyncio
    print(asyncio.run(run_request()))

5 运行结果

  • 查看调用过程,result.new_items对象存储了大模型调用agent的步骤。

  • 查看执行结果

        运行成功后控制台会输出两个工作的执行结果,在项目目录中会生成weather.txt文件,并且获取天气tool的内容会被写入此文件中,这是一条典型的串行工作调用场景。

附录

配置文件.env

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值