c语言定积分的基本思想_第九章 定积分

8628c3b76cba14940c1ab4f25dab3dc4.png

1、定积分概念

一、问题提出

定积分是从求曲边面积、变力做功等实际问题中提炼出来的,其核心思想是分割、近似求和,取极限,其表达形式为:
equation?tex=S+%5Capprox+%5Csum_%7Bi%3D1%7D%5En+f%28%5Cxi_i%29+%5CDelta+x_i

二、定积分的定义

定义1:设闭区间

equation?tex=%5Ba%2Cb%5D 内有
equation?tex=n-1 个点,依次为
equation?tex=a%3Dx_0+%5Clt+x_1+%5Clt+x_2+%5Clt+%5Ccdots+%5Clt+x_%7Bn-1%7D+%5Clt+x_n+%3Db ,他们把
equation?tex=%5Ba%2Cb%5D 分成
equation?tex=n 个小区间
equation?tex=%5CDelta+_%7Bi%7D+%3D+%5Bx_%7Bi-1%7D%2Cx_i%5D%2Ci%3D1%2C2%2C+%5Ccdots+%2C+n 这些闭区间构成对
equation?tex=%5Ba%2Cb%5D 的一个
分割,记为
equation?tex=T+%3D+%5C%7B+%5CDelta_1%2C%5CDelta_2%2C%5Ccdots%2C%5CDelta_n+%5C%7D ,小区间
equation?tex=%5CDelta_i 的长度为
equation?tex=%5CDelta_+%7Bx_i%7D+%3D+x_i+-+x_%7Bi-1%7D ,并记
equation?tex=%7C%7CT%7C%7C%3D%5Cmax_%7B1+%5Cleq+i+%5Cleq+n%7D%5C%7B%5CDelta+_%7Bi%7D%5C%7D 称为分割
equation?tex=T

定义2:

equation?tex=f 是定义在
equation?tex=%5Ba%2Cb%5D 上的一个函数,对于
equation?tex=%5Ba%2Cb%5D 的一个分割
equation?tex=T+%3D+%5C%7B+%5CDelta_1%2C%5CDelta_2%2C%5Ccdots%2C%5CDelta_n+%5C%7D ,任取点
equation?tex=%5Cxi_i+%5Cin+%5CDelta_i%2Ci%3D1%2C2%2C%5Ccdots%2Cn 并作和式
equation?tex=%5Csum_%7Bi%3D1%7D%5En+f%28%5Cxi_i%29%5CDelta+x_i 称此和式为函数
equation?tex=f
equation?tex=%5Ba%2Cb%5D 上的一个积分和,也称
黎曼和

定义3:

equation?tex=f 是定义在
equation?tex=%5Ba%2Cb%5D 上的一个函数,
equation?tex=J 是一个确定的实数,若对任给的正数
equation?tex=%5Cvarepsilon ,总存在某一正数
equation?tex=%5Cdelta ,使得对
equation?tex=%5Ba%2Cb%5D 的任何分割
equation?tex=T ,以及在其上任意选取的点集
equation?tex=%5C%7B%5Cxi_i%5C%7D ,只要
equation?tex=%7C%7CT%7C%7C+%5Clt+%5Cdelta ,就有
equation?tex=%7C%5Csum_%7Bi%3D1%7D%5En+f%28%5Cxi_i%29+%5CDelta+x_i-J%7C+%5Clt+%5Cvarepsilon ,则称函数
equation?tex=f 在区间
equation?tex=%5Ba%2Cb%5D
黎曼可积;数
equation?tex=J 称为
equation?tex=f
equation?tex=%5Ba%2Cb%5D 上的定积分或黎曼积分,记作
equation?tex=J+%3D+%5Cint_a%5Eb+f%28x%29dx
equation?tex=%5Ba%2Cb%5D 称为
积分区间
equation?tex=a%E3%80%81b 分别称为定积分的
下限上限

2、牛顿-莱布尼茨公式

将定积分与不定积分联系起来
  • 定理:若函数
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上连续,且存在原函数
    equation?tex=F ,即
    equation?tex=F%5E%7B%27%7D%28x%29+%3D+f%28x%29+%2C+x+%5Cin+%5Ba%2Cb%5D ,则
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积,且
    equation?tex=%5Cint_a%5Ebf%28x%29dx+%3D+F%28b%29+-+F%28a%29 ,称为
    牛顿-莱布尼茨公式,也常写成
    equation?tex=%5Cint_a%5Ebf%28x%29dx+%3D+F%28x%29%7C+_a%5Eb

3、可积条件

一、可积的必要条件

  • 定理:若函数
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积,则
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上必定有界

二、可积的充要条件

  • 可积准则:函数
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积的充要条件是:任给
    equation?tex=%5Cvarepsilon+%5Cgt+0 ,总存在相应的一个分割
    equation?tex=T ,使得
    equation?tex=S%28T%29+-+s%28T%29+%5Clt+%5Cvarepsilon
equation?tex=S%28T%29+%3D+%5Csum_%7Bi%3D1%7D%5En+M_i+%5CDelta+x_i+%2C+s%28T%29+%3D+%5Csum_%7Bi%3D1%7D%5En+m_i+%5CDelta+x_i
equation?tex=M_i+%3D+%5Csup_%7Bx+%5Cin+%5CDelta_i%7Df%28x%29%2Cm_i+%3D+%5Cinf_%7Bx%5Cin+%5CDelta_i%7Df%28x%29%2Ci%3D1%2C2%2C%5Ccdots%2Cn

其中
equation?tex=%5CDelta_i+
equation?tex=%5Ba%2Cb%5D 上任一分割

三、可积函数类

  • 定理1:若函数
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D上的连续函数,则
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积
  • 定理2:
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D上只有有限个间断点的有界函数,则
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积
  • 定理3:
    equation?tex=f 是在
    equation?tex=%5Ba%2Cb%5D上的单调函数,则
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积

4、定积分的性质

一、定积分的基本性质:

  • 性质1:
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积,
    equation?tex=k 为常数,则
    equation?tex=kf
    equation?tex=%5Ba%2Cb%5D 上也可积,且
    equation?tex=%5Cint_a%5Ebkf%28x%29dx+%3D+k%5Cint_a%5Ebf%28x%29dx
  • 性质2:
    equation?tex=f%E3%80%81g
    equation?tex=%5Ba%2Cb%5D 上可积,则
    equation?tex=f%5Cpm+g
    equation?tex=%5Ba%2Cb%5D 上也可积,且
    equation?tex=%5Cint_a%5Eb%5Bf%28x%29%5Cpm+g%28x%29%5Ddx+%3D+%5Cint_a%5Ebf%28x%29dx+%5Cpm+%5Cint_a%5Ebg%28x%29dx
  • 性质3:
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上可积的充要条件是:任给
    equation?tex=c+%5Cin+%28a%2Cb%29
    equation?tex=f
    equation?tex=%5Ba%2Cc%5D
    equation?tex=%5Bc%2Cb%5D 上都可积,则
    equation?tex=%5Cint_a%5Ebf%28x%29dx+%3D+%5Cint_a%5Ecf%28x%29dx+%2B%5Cint_c%5Ebf%28x%29dx
规定
equation?tex=a+%3D+b 时,令
equation?tex=%5Cint_a%5Ebf%28x%29dx+%3D+0
equation?tex=a+%5Cgt+b 时,令
equation?tex=%5Cint_a%5Ebf%28x%29dx+%3D+-+%5Cint_b%5Eaf%28x%29dx

二、积分中值定理

  • 积分第一中值定理:
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上连续,则至少存在一点
    equation?tex=%5Cxi+%5Cin+%5Ba%2Cb%5D ,使得
    equation?tex=%5Cint_a%5Ebf%28x%29dx+%3D+f%28%5Cxi%29%28b-a%29
  • 推广的积分第一中值定理:
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上连续,且
    equation?tex=g%28x%29
    equation?tex=%5Ba%2Cb%5D 上不变号,则至少存在一点
    equation?tex=%5Cxi+%5Cin+%5Ba%2Cb%5D ,使得
    equation?tex=%5Cint_a%5Ebf%28x%29g%28x%29dx+%3D+f%28%5Cxi%29%5Cint_a%5Ebg%28x%29dx

5、定积分计算

在定积分形式下连续函数必定存在原函数

一、变限积分与原函数的存在性

  • 变上限的定积分:
    equation?tex=%5Cphi%28x%29+%3D+%5Cint_a%5Exf%28t%29dt+%2C+x%5Cin%5Ba%2Cb%5D
还有变下限的定积分
equation?tex=%5Cpsi%28x%29+%3D+%5Cint_x%5Ebf%28t%29dt+%2C+x%5Cin%5Ba%2Cb%5D ,注意这里是
equation?tex=f%28t%29 别写成
equation?tex=x 混淆概念
  • 原函数存在定理:
    equation?tex=f
    equation?tex=%5Ba%2Cb%5D 上连续,则上函数
    equation?tex=%5Cphi%28x%29+%3D+%5Cint_a%5Exf%28t%29dt+%2C+x%5Cin%5Ba%2Cb%5D 处处可导,且:
    equation?tex=%5Cphi%5E%7B%27%7D%28x%29+%3D+%5Cfrac%7Bd%7D%7Bdx%7D%5Cint_a%5Exf%28t%29dt+%3D+f%28x%29%2Cx+%5Cin+%5Ba%2Cb%5D
equation?tex=%5Cphi
equation?tex=f
equation?tex=%5Ba%2Cb%5D 上的一个原函数,次定理沟通了导数和定积分的内在联系,被誉为
微积分学基本定理,
equation?tex=f 的任意原函数满足:
equation?tex=F%28x%29+%3D+%5Cint_a%5Ex+f%28t%29dt+%2BC+%3D+F%28x%29+-+F%28a%29
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需
C语言实现定积分可以使用数值积分的方法,其中比较常见的有梯形法和辛普森法。下面分别介绍这两种方法的实现。 1. 梯形法 梯形法是一种简单的数值积分方法,其基本思想是将被积函数曲线上的每一小段区间都视为一条梯形,并计算这些梯形的面积之和作为积分近似值。具体实现如下: ```c double trapezoid(double (*f)(double), double a, double b, int n) { double h = (b - a) / n; // 计算每个小区间的宽度 double sum = 0.5 * (f(a) + f(b)); // 初始化积分值为首尾两点函数值之和的一半 for (int i = 1; i < n; i++) { double x = a + i * h; // 计算当前小区间的左端点 sum += f(x); // 将当前小区间的函数值加入积分值中 } return sum * h; // 返回积分值 } ``` 其中,`f` 是被积函数,`a` 和 `b` 是积分区间的两个端点,`n` 是将积分区间分成的小区间数。函数返回的是积分近似值。 2. 辛普森法 辛普森法是一种更为精确的数值积分方法,其基本思想是将被积函数曲线上的每一小段区间都视为一个二次多项式,并计算这些多项式的积分之和作为积分近似值。具体实现如下: ```c double simpson(double (*f)(double), double a, double b, int n) { double h = (b - a) / n; // 计算每个小区间的宽度 double sum = f(a) + f(b); // 初始化积分值为首尾两点函数值之和 for (int i = 1; i < n; i++) { double x = a + i * h; // 计算当前小区间的左端点 if (i % 2 == 0) { sum += 2 * f(x); // 如果是偶数个小区间,则将函数值乘以2再加入积分值中 } else { sum += 4 * f(x); // 如果是奇数个小区间,则将函数值乘以4再加入积分值中 } } return sum * h / 3; // 返回积分值 } ``` 同样,`f` 是被积函数,`a` 和 `b` 是积分区间的两个端点,`n` 是将积分区间分成的小区间数。函数返回的也是积分近似值。 需要注意的是,这两种方法都有其适用范围和精度限制,具体使用时需要结合实际情况进行选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值