实例
经过索伯算子所产生的结果是一张二维的图,代表的每个点的梯度。下图中高梯度的地方会以白色的线表示,The result of the Sobel–Feldman operator is a 2-dimensional map of the gradient at each point. It can be processed and viewed as though it is itself an image, with the areas of high gradient (the likely edges) visible as white lines. The following images illustrate this, by showing the computation of the Sobel-Feldman operator on a simple image.
测试的灰阶影像
经过标准化后的索伯算子(梯度)结果
经过标准化后的x轴方向梯度结果
经过标准化后的y轴方向梯度结果
下方的灰阶影像说明了梯度的方向。红色和黄色代表梯度角度是正的,相对地,蓝色和青色代表梯度角度是负的。在圆的最左边和最右边,垂直的梯度角度为零是因为没有区域的变化,而在圆的最顶部和底部,水平的梯度角度为零是因为没有区域的变化。在圆的最顶部和底部,水平梯度角度变化分别是 −π/2 和π/2是因为没有区域的变化。顶部的负梯度角度代表这条边是从亮到暗的区域界线,而底部的正梯度角度代表这条边是从暗到亮的区域界线。其他显示为黑色的像素是因为附近完全没有任何变化。值得注意的是,因为角度是对应到像素值的函数,因此可能一些微小的变化也可能会导致很大的角度变化。因此,些微的噪声可能会对角度响应变化,而这通常是不乐见的情况。由上述可知,使用角度梯度在影像处理的应用时,需要在影像去噪多加着墨以减少错误。
黑色圆圈与白底的灰阶影像
经过索伯算子得到的梯度方向结果