计算机图像学梯度算子伪代码,索贝尔算子

本文介绍了索伯算子在图像处理中的作用,它用于计算图像中每个点的梯度。高梯度区域在处理后以白色线条呈现,有助于识别边缘。图像展示了梯度方向,红色和黄色表示正角度,蓝色和青色表示负角度。噪声可能对角度响应产生影响,因此在使用梯度方向进行图像处理时,需要考虑去噪。示例中展示了经过索伯算子处理的灰阶图像的梯度方向结果。
摘要由CSDN通过智能技术生成

实例

经过索伯算子所产生的结果是一张二维的图,代表的每个点的梯度。下图中高梯度的地方会以白色的线表示,The result of the Sobel–Feldman operator is a 2-dimensional map of the gradient at each point. It can be processed and viewed as though it is itself an image, with the areas of high gradient (the likely edges) visible as white lines. The following images illustrate this, by showing the computation of the Sobel-Feldman operator on a simple image.

200px-Bikesgray.jpg

测试的灰阶影像

200px-Bikesgraysobel.jpg

经过标准化后的索伯算子(梯度)结果

200px-Bikesgraygv.jpg

经过标准化后的x轴方向梯度结果

200px-Bikesgraygh.jpg

经过标准化后的y轴方向梯度结果

下方的灰阶影像说明了梯度的方向。红色和黄色代表梯度角度是正的,相对地,蓝色和青色代表梯度角度是负的。在圆的最左边和最右边,垂直的梯度角度为零是因为没有区域的变化,而在圆的最顶部和底部,水平的梯度角度为零是因为没有区域的变化。在圆的最顶部和底部,水平梯度角度变化分别是 −π/2 和π/2是因为没有区域的变化。顶部的负梯度角度代表这条边是从亮到暗的区域界线,而底部的正梯度角度代表这条边是从暗到亮的区域界线。其他显示为黑色的像素是因为附近完全没有任何变化。值得注意的是,因为角度是对应到像素值的函数,因此可能一些微小的变化也可能会导致很大的角度变化。因此,些微的噪声可能会对角度响应变化,而这通常是不乐见的情况。由上述可知,使用角度梯度在影像处理的应用时,需要在影像去噪多加着墨以减少错误。

150px-Black_Circle.jpg

黑色圆圈与白底的灰阶影像

180px-Sobel_Operator_Gradient_Angle.JPG

经过索伯算子得到的梯度方向结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值