2021年1月8日-加州大学洛杉矶分校的研究人员开发了一种通过创建由专门设计的光子层组成的物理网络来整形光脉冲的方法。基于类似概念的网络已经可以进行全光学分类和图像识别,这表明该新技术的应用涵盖了计算和AI。
研究人员创建了衍射光网络,该光网络吸收输入的光脉冲,并通过深度学习设计的3D打印层,然后对输出脉冲进行整形,以所需的时间波形离开光网络。研究人员称,该网络是首次在电磁频谱的太赫兹区域进行演示,显示了各种形式的太赫兹脉冲的合成。
为了在连续的波长范围内精确控制宽带输入脉冲的相位和幅度,研究人员生成了不同的脉冲形状和不同的脉冲宽度。
无损衍射层不消耗功率,可以直接工程化通过例如量子级联激光器,固态电路和粒子加速器产生的太赫兹脉冲。演示的方法用途广泛,无论光束质量或偏振状态如何,都可以轻松地改造太赫兹脉冲。
塑造光脉冲的光学衍射网络的艺术描绘。插图:3D打印的光学衍射网络,用于工程太赫兹脉冲。图片提供:加州大学洛杉矶分校技术进步工程学院。
加州大学洛杉矶分校伏尔加诺分校工程创新学教授兼电气与计算机工程大臣教授Aydogan Ozcan认为,该框架可以应用于电磁频谱的其他部分,以成形光脉冲。他认为这项工作将在使用光脉冲的各个场所找到广泛的应用-超快成像,光谱学和光通信。
该研究发表在《自然通讯》上。