#题目链接 第一类斯特林数·行 第一类斯特林数·列 第二类斯特林数·行 第二类斯特林数·列 #求一行第一类斯特林数 由第一类斯特林数的推论,$x^{\overline{n}}=\sum_i\begin{bmatrix}n\i\end{bmatrix}x^i$,分治FFT计算上升幂即可 $O(nlog^2n)$。 #求一列第一类斯特林数 由第一类斯特林数的定义,$\begin{bmatrix}n\m\end{bmatrix}$ 是把 $N$ 个不同的球划分成 $m$ 个无区别的圆排列的方案数。 而把 $N$ 个球排成圆排列的方案数的EGF为 $F(x)=\sum_{i=1}^\infty \frac{(i-1)!}{i!}x^i$,那么答案的EGF则为 $\frac{F^m(x)}{m!}$,多项式快速幂即可。 #求一行第二类斯特林数 考虑有 $n$ 个球,染成 $c$ 种不同颜色的方案数。 $$c ^ n = \sum_{i = 0} ^ c {c\choose i} * \begin{Bmatrix} n \i \end{Bmatrix} * i!$$ 二项式反演得 $$\begin{Bmatrix} n \m \end{Bmatrix} * m! = \sum_{i = 0} ^ m (-1)^{m-i} * {m\choose i} * i^n $$ 卷积即可 $O(nlogn)$。 #求一列第二类斯特林数 由第二类斯特林数的定义,$\begin{Bmatrix}n\m\end{Bmatrix}$ 是把 $N$ 个不同的球划分成 $m$ 个无区别的非空集合的方案数。 而把 $N$ 个球组成非空集合的方案数的EGF为 $F(x)=\sum_{i=1}^\infty \frac{x^i}{i!}=e^x-1$,那么答案的EGF则为 $\frac{F^m(x)}{m!}$,多项式快速幂即可。 #求一排贝尔数 由贝尔数的定义,$Bell(n)$ 表示 $n$ 个不同的球划分成若干个非空集合的方案数。 而把 $N$ 个球组成非空集合的方案数的EGF为 $F(x)=\sum_{i=1}^\infty \frac{x^i}{i!}=e^x-1$,根据集合与划分的关系,那么答案的EGF则为 $e^{e^x-1}$,多项式 Exp 即可。
java第二类斯特林数编程代码_快速求斯特林数总结(洛谷模板题解)
最新推荐文章于 2021-08-23 15:38:24 发布