医学影像处理与3D重建技术:CQ500-CT-14案例分析

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本案例涉及的"医学影像处理"主要讨论计算机断层扫描(CT)技术和3D重建技术在医学领域中的应用。CT扫描是一种非侵入性的成像技术,通过X射线和计算方法生成二维图像或三维模型。本案例中的"CQ500-CT-14"可能指特定型号的CT扫描设备及其第14次扫描数据。3D重建技术能够基于多个二维CT扫描图像构建出立体模型,帮助医生更直观地了解病灶。案例包含以DICOM格式存储的原始CT扫描数据,这些数据可用于3D重建并应用于临床诊断、手术规划和医学研究,如神经外科和大脑结构研究。 CQ500-CT-14.zip

1. 医学影像处理基础

在现代医学中,影像处理技术已不可或缺,它帮助医生从微观到宏观层面更深入地了解人体结构和功能。本章节将探讨医学影像处理的基本概念,为后续章节中将讨论的各类高级技术和应用打下坚实基础。

1.1 医学影像处理的重要性

医学影像处理是现代临床诊断、疾病监测和治疗规划的关键环节。它不仅能够提供人体内部结构的详细图像,还能支持医生进行更加精确的判断和干预。通过图像处理技术,可以将原始医学影像转换成有助于医生解读的信息,从而提高诊断的准确性和治疗的效率。

1.2 医学影像的分类

医学影像类型繁多,常见的包括X射线、CT扫描、MRI、超声波等。每种影像技术都有其独特的成像原理、优势和适用范围。例如,CT扫描擅长于快速成像并提供详细的解剖结构信息,而MRI则更擅长于软组织成像。理解这些不同影像技术的特点对于正确选择和使用它们至关重要。

1.3 图像处理技术基础

图像处理是一门通过算法对图像进行操作以改善其视觉效果或提取有用信息的学科。基本的图像处理技术包括图像增强、去噪、对比度调整等,它们能够帮助提高图像的诊断价值。随着技术的发展,更高级的图像处理技术,如图像分割、特征提取和模式识别,正逐渐应用于医学影像中,使得疾病的检测和分类更为精确。

2. CT扫描技术原理与应用

2.1 CT扫描技术概述

2.1.1 CT扫描的工作原理

计算机断层扫描(CT)技术,是一种先进的医学成像技术,可以提供人体内部结构的详细横截面图像。CT扫描利用X射线和特定的图像处理算法,生成比传统X射线更清晰、更详细的图像。其工作原理涉及围绕患者旋转的X射线源和探测器阵列。X射线束穿透患者身体后,不同的组织和器官会吸收不同量的射线,探测器根据穿过身体各部位的X射线量来测量射线强度的变化。通过分析这些数据,计算机能够构建出身体内部结构的详细图像。

CT扫描的关键在于数据的采集和重建。当X射线穿过身体组织时,由于不同组织的密度和厚度不同,它们对X射线的吸收程度也不同。探测器负责收集这些变化的数据,然后将数据转换成电信号,这些电信号再被计算机处理成图像。整个过程需要非常精确的时间控制和算法来确保图像的精确度和清晰度。

2.1.2 CT扫描技术的发展历程

CT技术的发展始于20世纪70年代,由英国工程师高弗雷·霍恩斯菲尔德和南非物理学家艾伦·科马克共同发明。1972年,首台商业CT扫描仪投入使用,随后,在近半个世纪的时间里,CT技术经历了从最初的单一断面扫描到多层螺旋CT扫描的巨大飞跃。多层螺旋CT能够同时进行多层扫描,大幅提高了数据采集的速度和效率。

随着技术的不断发展,CT扫描技术在硬件和软件方面都取得了重大进步。现代CT设备可提供亚毫米级的图像分辨率,并通过采用更先进的X射线管和探测器技术来减少辐射剂量,提高图像质量。此外,随着计算能力的增强和图像处理算法的改进,现在可以对CT扫描得到的数据进行更为复杂的三维重建,为临床诊断和科研提供了更多可能。

2.2 CT扫描的应用领域

2.2.1 临床诊断中的应用

在临床诊断领域,CT扫描技术因其高分辨率和快速成像能力而广泛应用。它可以提供有关身体内部器官、骨骼结构、血管系统和其他软组织的详细信息。这对于诊断多种类型的病变,如肿瘤、血管异常、炎症、创伤和骨折等,具有重要价值。

CT技术在诊断中的优势在于能够显示传统的X射线所无法显示的细节,并可对病灶进行定位和定性分析。例如,在胸部CT扫描中,可以清晰地观察到肺部的细微结构,帮助医生早期发现肺癌、结核等疾病。在脑部CT扫描中,可以快速准确地判断是否存在脑出血、血肿、肿瘤等情况。此外,CT血管造影技术还可以清晰显示血管的内部结构,对于诊断动脉瘤、血管狭窄、血管畸形等血管疾病极为重要。

2.2.2 科研领域中的应用

CT扫描技术同样在科研领域扮演着重要角色,特别是在生物医学研究和临床前研究中。在生物医学研究中,CT扫描能够提供组织和器官的三维图像,有助于对疾病模型、药物反应和生理过程的深入了解。此外,CT扫描也常用于材料科学研究,比如在材料结构的无损检测、三维结构分析和质量控制等方面。

在临床前研究,CT扫描被广泛应用于药物开发和治疗效果评估。例如,通过对比不同时间点的CT图像,研究人员可以观察到肿瘤体积的变化,从而评估药物的疗效。同时,CT技术在新药的药代动力学和药效学研究中也起到了关键作用,为药物的审批和上市提供了重要的数据支持。

2.3 CT扫描技术的现状与挑战

2.3.1 当前技术的应用局限性

尽管CT扫描技术在诊断和科研方面有着广泛应用,但其也存在一定的局限性。首先,CT扫描属于放射性成像技术,不可避免地会对患者造成一定程度的辐射暴露。虽然现代CT扫描仪已经通过技术进步大幅降低了辐射剂量,但对于敏感群体,如儿童和孕妇,仍然需要特别谨慎。

其次,CT扫描图像可能存在伪影,尤其是在处理骨组织与软组织交界区域时。这些伪影可能会对诊断造成干扰。此外,CT扫描对于某些疾病的诊断特异性不足,尤其是在没有明显形态学改变的情况下,需要结合其他成像技术或临床资料进行综合诊断。

2.3.2 技术发展趋势与挑战

CT扫描技术的发展趋势是向更高分辨率、更快速度和更低辐射剂量的方向发展。例如,采用迭代重建算法的CT扫描技术能够在降低噪声的同时减少患者接受的辐射剂量。此外,多模态成像,即将CT与正电子发射断层扫描(PET)、磁共振成像(MRI)等其他成像技术结合,也为疾病的诊断和治疗提供了更为全面的视角。

然而,这些技术的发展同样面临着挑战。首先是技术成本的挑战,高级CT扫描设备价格昂贵,对于一些医疗机构来说,高成本可能成为设备更新换代的障碍。其次,由于技术不断进步,对操作人员的专业技能和经验要求也在不断提高,专业人才的培养和持续教育将成为推动该领域发展的关键因素。最后,如何在减少辐射剂量的同时保持图像质量和诊断准确性,仍然是CT技术面临的一个重要科学问题。

在未来的医学影像领域,CT扫描技术将与其他成像技术一起,继续作为不可或缺的诊断工具,为人类健康提供保障。随着新技术、新算法的不断涌现,我们可以期待CT扫描技术将为我们揭开更多的生命之谜,为医学研究和临床应用带来更多的可能性。

3. 3D重建技术方法

3.1 3D重建技术的基本概念

3.1.1 3D重建的定义和目的

三维重建技术是通过计算机算法将二维图像序列转化为三维模型的过程,其目的是为了能够以一种更加直观、真实的方式展现物体或场景的结构信息。在医学影像领域,3D重建尤为重要,它能够帮助医生从多角度观察病灶组织,提高诊断的准确性。比如,在心脏病的诊断中,通过三维重建可以清晰地展示心脏的结构,从而帮助医生准确评估心脏疾病的状态。

3.1.2 3D重建技术的分类

3D重建技术主要可以分为两类:基于图像的重建和基于模型的重建。基于图像的重建通常需要一系列的二维图像,例如CT或MRI扫描得到的横截面图像。这些图像经过计算机处理后,可以生成三维的模型。而基于模型的重建则依赖于预先定义的几何模型,通过调整这些模型的参数来拟合实际的图像数据,以获得三维模型。

3.2 3D重建的关键技术

3.2.1 图像分割技术

图像分割是将图像中的感兴趣区域(ROI)与背景或其他区域区分开来的一个重要步骤。在3D重建过程中,正确的图像分割能够帮助更精确地分离出需要重建的组织或器官,提高重建模型的准确度。常用的图像分割技术包括阈值分割、区域生长、边缘检测以及基于深度学习的语义分割等。例如,基于阈值的分割方法通过设定合适的灰度阈值来区分不同的组织。

3.2.2 表面渲染与体积渲染技术

在将二维图像序列转化为三维模型的过程中,表面渲染和体积渲染是两种主要的渲染技术。表面渲染是一种快速且常用的技术,它通过将相邻的图像片断边缘连接起来,形成一个表面模型。体积渲染则是一种更为复杂的渲染技术,它通过直接从体素数据出发,生成更加细腻的三维图像,对于显示组织的内部结构特别有效。它能够提供深度信息,并且保留更多的原始数据。

3.3 3D重建技术的实践应用

3.3.1 3D模型在诊断中的应用

三维重建生成的模型在临床诊断中具有广泛的应用。例如,在骨科领域,利用3D重建技术可以清晰地展示骨折情况,帮助医生进行更精准的手术规划。在神经外科,3D重建模型使得脑部结构可视化,提高了对复杂颅内结构的认识,为手术提供了有力支持。此外,3D打印技术可以将重建的模型转化为实体模型,为医患交流和手术练习提供了新的途径。

3.3.2 3D重建在医学教育中的作用

三维重建技术在医学教育领域的应用同样广泛。通过三维模型,医学生能够以更加直观的方式学习复杂的解剖结构,这比传统的二维图像更加有助于理解人体的三维空间关系。此外,医学教育中的模拟手术训练也可以利用3D重建技术来实现,提供接近真实的手术环境,帮助学生更好地掌握手术技能。

以下代码块展示了一个简单的图像分割过程,使用Python语言和OpenCV库进行处理。

import cv2
import numpy as np

# 加载图像
image = cv2.imread('path_to_image.jpg')

# 将图像转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用阈值分割技术
_, thresholded = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 显示结果
cv2.imshow('Thresholded Image', thresholded)
cv2.waitKey(0)
cv2.destroyAllWindows()

参数说明与逻辑分析

  • cv2.imread('path_to_image.jpg') :读取图像文件到变量中。
  • cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) :将彩色图像转换为灰度图。
  • cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) :将灰度图像应用二值化处理。这里的127是阈值,255是最大像素值, cv2.THRESH_BINARY 表示二值化类型。
  • cv2.imshow('Thresholded Image', thresholded) :显示处理后的图像。
  • cv2.waitKey(0) :等待用户按键操作。
  • cv2.destroyAllWindows() :关闭所有窗口。

在上述代码中,我们首先导入了 cv2 模块,它是OpenCV的Python接口,用于处理图像。然后,我们读取了一张图像,将其转换为灰度图,通过设定阈值将灰度图二值化。二值化处理是一种基础的图像分割技术,该方法适用于图像背景和前景对比度比较大的情况。通过这种方式,可以得到比较好的分割效果,后续的3D重建则可以在这些分割好的图像基础上进行。

这个简单的例子展示了图像处理的一个基本环节,为3D重建技术的实现提供了一定的理论基础。随着技术的发展,图像分割的方法也变得越来越复杂和高效,如深度学习等技术的应用使得图像分割的准确性大大提升,从而推动了3D重建技术向更高的水平发展。

4. DICOM格式及其医学影像数据

医学影像数据的标准化对于促进不同医疗设备之间的信息交流、临床诊断、教学研究以及数据共享是至关重要的。DICOM(Digital Imaging and Communications in Medicine)标准是医学影像领域内广泛接受和采用的标准格式,它为医学影像数据的存储、传输、处理、打印和显示提供了统一的规范。

4.1 DICOM标准概述

4.1.1 DICOM标准的定义和意义

DICOM标准是由美国放射学会(ACR)和美国国家电子产品制造商协会(NEMA)共同开发,旨在实现各种医疗影像设备及系统之间的互操作性。它定义了一套完整的网络通讯协议以及一系列文件格式,确保了医学影像及其相关信息能够在不同的系统之间进行无缝传输和共享。

4.1.2 DICOM标准的组成与结构

DICOM标准由多个组件构成,包括: - 数据结构 :用于医学图像的表示和管理。 - 网络协议 :描述了不同系统之间如何建立连接、发送和接收数据。 - 信息对象定义 :说明了医学影像和相关数据的属性,如患者信息、检查参数等。

结构上,DICOM包含了多个层次的定义,从基础的数据类型到复杂的影像对象都有详细的描述,允许灵活地适应不同的医疗需求。

4.2 DICOM数据的管理与应用

4.2.1 DICOM数据的存储和检索

在医学影像数据的存储和检索过程中,DICOM标准提供了系列的工具和方法,以保证数据的完整性、一致性和可访问性。DICOM文件通常存储于PACS(Picture Archiving and Communication System)系统中,便于进行长期存储、快速检索和分发。

4.2.2 DICOM数据的安全性和隐私保护

由于医学影像数据通常涉及敏感信息,DICOM标准也提供了数据加密和访问控制的机制,确保数据在传输和存储过程中的安全性和隐私保护。通过使用强加密标准和认证协议,使得敏感数据得以在保障患者隐私的前提下进行传输和共享。

4.3 DICOM在跨平台应用中的作用

4.3.1 不同医疗设备间的兼容性问题

由于医学影像设备来自不同制造商,DICOM标准通过提供统一的数据交换格式来解决不同医疗设备间的兼容性问题。这不仅简化了数据交换流程,还降低了医疗成本,提高了效率。

4.3.2 跨机构数据共享与协作流程

跨机构的数据共享与协作是现代医疗保健发展的趋势之一。DICOM标准支持通过网络传输数据,使得不同医疗机构间能够共享影像数据,促进了远程会诊、专家咨询和医学研究等领域的协作。

接下来,我们将进入第五章,深入探讨CT扫描数据处理与分析的多种技术和实践应用。

5. CT扫描数据处理与分析

CT扫描是一种依赖于X射线技术的医学影像方法,广泛应用于临床诊断。获取的CT数据不仅包含了丰富的形态学信息,还蕴含了大量的生理和病理细节。为了更有效地使用这些数据,进行准确的医学分析和诊断,对CT扫描数据的处理和分析是至关重要的。本章将深入探讨CT数据的预处理方法、定量分析以及处理工具与平台。

5.1 CT数据的预处理方法

5.1.1 图像去噪技术

在CT扫描过程中,由于多种因素如患者运动、设备噪声、扫描参数等的影响,原始CT图像往往会受到噪声的干扰,影响诊断的准确性。图像去噪技术因此成为CT数据预处理的一个重要环节。常见的去噪方法包括:

  • 空域滤波去噪 :这种方法直接对图像的像素值进行操作,常见的空域滤波器包括均值滤波、中值滤波和高斯滤波。中值滤波对于去除“椒盐噪声”非常有效,因为它能有效保持边缘信息。
  • 频域滤波去噪 :在频域中,噪声通常表现为高频成分,通过滤除高频信号,可以达到去噪的目的。这需要对图像进行傅里叶变换,处理后再进行逆变换。
  • 小波变换去噪 :小波变换是另一种频域处理方法,相比于傅里叶变换,小波变换具有良好的局部特性。通过选取合适的小波基,可以有效地去除噪声同时保留图像的细节信息。
from skimage.restoration import denoise_wavelet
import numpy as np
import matplotlib.pyplot as plt

# 示例:使用小波变换去噪
image_noisy = np.load('ct_noisy_data.npy')  # 假设已有含噪声的CT图像数据
image_denoised = denoise_wavelet(image_noisy, method='BayesShrink', mode='soft', wavelet='db1')

# 显示结果
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(image_noisy, cmap='gray')
plt.title('Noisy CT Image')
plt.axis('off')

plt.subplot(1, 2, 2)
plt.imshow(image_denoised, cmap='gray')
plt.title('Denoised CT Image')
plt.axis('off')

plt.show()

在上述代码示例中, denoise_wavelet 函数用于对CT图像进行小波变换去噪。参数解释如下: - method : 使用的方法,这里设置为 'BayesShrink' 。 - mode : 设置为 'soft' 表示使用软阈值。 - wavelet : 小波变换的类型,这里使用 'db1' (Daubechies小波)。

5.1.2 图像增强技术

图像增强技术旨在改善CT图像的视觉效果,以便于医生更好地识别和分析图像中的细节,如器官、病变等。图像增强的方法很多,常见的包括:

  • 对比度调整 :通过增强图像的亮度和对比度,使得图像中不同结构的差异更加明显。常见的方法包括直方图均衡化、线性或非线性变换等。
  • 锐化技术 :锐化技术通常用于增强图像的边缘细节。这可以通过计算图像的梯度,并对梯度进行放大来实现。
from skimage import img_as_float
from skimage.filters import unsharp_mask
from skimage.exposure import rescale_intensity

# 示例:使用非锐化掩膜法进行图像锐化
image_float = img_as_float(image_noisy)  # 将图像转换为浮点型
image_sharpened = unsharp_mask(image_float, amount=1.0, radius=1, multichannel=False)

# 调整对比度,增强图像效果
image_enhanced = rescale_intensity(image_sharpened, in_range='image', out_range=(0, 1))

# 显示结果
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(image_float, cmap='gray')
plt.title('Original CT Image')
plt.axis('off')

plt.subplot(1, 2, 2)
plt.imshow(image_enhanced, cmap='gray')
plt.title('Enhanced CT Image')
plt.axis('off')

plt.show()

上述代码中, unsharp_mask 函数用于对CT图像进行锐化处理,其中 amount 参数控制锐化的强度, radius 参数决定模糊的半径,而 rescale_intensity 用于重新调整图像的对比度。

5.2 CT数据的定量分析

5.2.1 病变区域的量化分析

在放射科的日常工作中,定量分析病变区域是提高诊断精确度的关键步骤。通过计算病变区域的大小、形态、密度等参数,可以为临床决策提供量化的依据。常用的量化分析方法包括:

  • 阈值分割 :基于病变区域与正常组织之间在CT值(Hounsfield Units)上的差异,选取合适的阈值,将病变区域从背景中分割出来。
  • 区域增长 :从一个或多个初始点开始,依据一定的准则将与初始点相似的邻近像素点逐步加入到目标区域中,直到满足停止条件。
from skimage import measure

# 示例:使用阈值分割技术分割病变区域
threshold = 50  # 设置阈值,该值根据实际情况选取
image_thresholded = image_float > threshold
label_image = measure.label(image_thresholded)  # 标记连通区域

# 计算每个区域的特性,例如面积等
properties = measure.regionprops(label_image)
for prop in properties:
    print(f"Label: {prop.label}, Area: {prop.area}")

# 可视化分割结果
plt.imshow(image_thresholded, cmap='gray')
plt.title('Thresholded Segmentation')
plt.axis('off')
plt.show()

上述代码中, measure.label 函数用于标记分割出的连通区域, measure.regionprops 用于计算每个连通区域的属性,如面积。

5.2.2 影像组学在CT数据中的应用

影像组学(Radiomics)是近年来在医学影像领域新兴的一个研究方向。它指的是从医学影像中提取大量的特征,并利用这些特征建立模型用于疾病的预测、分类等。影像组学的特征包括:

  • 强度特征 :描述图像的亮度或灰度分布特性。
  • 形状特征 :描述图像中结构的几何属性。
  • 纹理特征 :描述图像中像素的分布规律。
from radiomics import featureextractor

# 示例:使用影像组学提取CT图像特征
extractor = featureextractor.RadiomicsFeatures()

# 加载CT图像并进行预处理(此处省略预处理步骤)
# ...

# 提取特征
features = extractor.execute(image_float, label_image)

# 输出提取的特征
for key, value in features.items():
    print(f"{key}: {value}")

在上述代码中, radiomics.featureextractor.RadiomicsFeatures 是使用影像组学库中的特征提取器。特征提取的具体参数根据影像组学的需求进行配置。

5.3 CT数据处理的工具与平台

5.3.1 专业软件工具介绍

在医学影像领域,存在许多专业的软件工具,它们提供了从图像获取、预处理、分析到诊断报告的全流程功能。一些著名的软件包括:

  • 3D Slicer :一款开源软件,提供了强大的三维成像处理和可视化功能。
  • MIMICS :一款广泛使用的医学影像建模软件,特别适合将CT扫描数据转换为三维模型。
  • Radiant :一款集成了影像组学分析的软件,支持高级的图像处理和数据分析。

5.3.2 开源平台的搭建与应用

随着开源文化的发展,开源平台在医学影像处理方面也变得越来越流行。它们具有以下优势:

  • 社区支持 :开源平台背后通常有一个活跃的社区,用户可以得到及时的技术支持。
  • 定制化 :用户可以根据自己的需求定制软件功能。
  • 透明性 :用户可以检查和审计软件的源代码,保证软件的安全性和可靠性。

通过以上章节的内容,本章深入探讨了CT扫描数据处理和分析的技术和方法。接下来的章节将着重介绍3D重建技术在临床和科研中的应用。

6. 3D重建在临床和科研中的应用

6.1 3D重建在疾病诊断中的价值

三维重建技术在医学影像领域中的进步极大地提高了疾病诊断的精确性和效率。特别是在复杂病例中,医生可以通过三维模型直观地分析病变部位,辅助其做出更加准确的临床决策。

6.1.1 辅助诊断的临床案例分析

在临床应用中,通过3D重建技术生成的详细三维图像能够提供比二维图像更丰富的解剖信息。例如,在骨科或神经外科手术规划中,三维重建技术可以帮助外科医生对复杂骨折或脑部结构进行精细的可视化,从而制定出更为精确的手术方案。

6.1.2 3D重建技术在介入手术中的应用

在介入手术中,3D重建技术可以与实时影像技术相结合,提供实时的三维导航。这不仅提升了介入手术的精确度,还减少了患者接受X射线的时间。以下是一个操作步骤示例:

graph LR
A[开始介入手术] --> B[获取患者CT数据]
B --> C[使用3D重建软件生成三维模型]
C --> D[医生利用三维模型进行手术规划]
D --> E[实施手术并结合实时影像系统]
E --> F[手术完成并进行术后评估]

6.2 3D重建在医学研究中的作用

6.2.1 3D模型在解剖学研究中的贡献

解剖学作为医学教育和研究的重要基础,其研究方法不断因3D重建技术的应用而革新。通过创建精确的三维解剖模型,研究人员可以更好地理解人体结构的复杂性,研究疾病的发展过程以及进行新的手术技术的测试。

6.2.2 3D重建在生物力学研究中的应用

生物力学研究涉及对人体运动和力量传导机制的分析。3D重建技术在这里发挥着重要作用,可以创建出符合个体解剖特点的模型,从而研究人体在不同情况下的生物力学反应。

6.3 3D重建技术的未来发展方向

6.3.1 人工智能与机器学习在3D重建中的应用

当前,人工智能(AI)和机器学习(ML)技术已经在图像处理和模式识别方面展示了巨大的潜力。在3D重建领域,AI和ML可以用于自动化图像分割、优化重建过程,甚至在某些情况下预测病变的发展趋势。

6.3.2 虚拟现实与增强现实在3D重建中的整合前景

虚拟现实(VR)和增强现实(AR)技术正在逐步改变医学教育和手术规划的面貌。将3D重建技术与VR和AR相结合,可以在沉浸式环境中为医生提供更加直观的解剖结构,并支持复杂手术过程的模拟训练。

以上内容展示了3D重建在医疗领域的广泛应用及其未来发展的广阔前景。通过这些应用,我们能够进一步增强对疾病的认识,并推动医学技术的创新。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本案例涉及的"医学影像处理"主要讨论计算机断层扫描(CT)技术和3D重建技术在医学领域中的应用。CT扫描是一种非侵入性的成像技术,通过X射线和计算方法生成二维图像或三维模型。本案例中的"CQ500-CT-14"可能指特定型号的CT扫描设备及其第14次扫描数据。3D重建技术能够基于多个二维CT扫描图像构建出立体模型,帮助医生更直观地了解病灶。案例包含以DICOM格式存储的原始CT扫描数据,这些数据可用于3D重建并应用于临床诊断、手术规划和医学研究,如神经外科和大脑结构研究。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值